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From Eq. (26), we obtain the following equation determining the value of 
Fc(a9 x)i 
(27) Fc - x = f-9 

whence: 

(28) F2 - xFc -a = 0. 

This equation is identical to the one which determines the continued square root 
i?(2, a9 x), and correspondingly 

(29) Fe{a9 x) = i?(2, a, x). 
An interesting result of Eq. (28) is that in the limit that x -> 0, we find 

(30) llm Fc(a9 x) = a*-, 

which does not seem obvious from the definition of Fc (a, x) by Eq. (26). 
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1. INTRODUCTION 

The numbers Fn = 1 + 22" and Mp = 2P - 1, where n is a nonnegative integer and 
p is a prime, are called Fermat and Mersenne numbers, respectively. Properties of 
these numbers have been studied for centuries and most of them are well known. At 
present, the number of known Fermat and Mersenne primes are five and twenty-seven, 
respectively. It is well known that if 2n - 1 = p, a prime, then n is a prime. It 
is quite easy to show that if 2n - 1 = pq9 p and q are primes, then either n is a 
prime or n = v2

9 where v is a prime. Thus 

2vl - 1 = pq = (2y - l)(2y(u"1) + ... + 2y + 1), 

where 2 u - l = p i s a Mersenne prime. This leads to the following definition. 
Let k and n be positive integers. The number L(k9 n) is defined as follows: 

L(k9 n) = 1 + 2n + (2n)2 + ... + (2n) 



1981] GENERALIZED FERMAT AND MERSENNE NUMBERS 13 

The purpose of this paper is to study the numbers L(k, ri) , which contain both the 
Fermat, L(2, 2n),and Mersenne, L(k9 1), numbers. We will show that while L(k, ri) 
possesses many interesting properties, there remain unanswered some very elemen-
tary questions about this class of numbers. 

2. PRIME NUMBERS OF THE FORM L(k9 ri) 

In this section, we shall show that if L(k9 ri) is a prime, then either L(k, ri) 
is a Mersenne prime, or n = pl and k = p. But first we need a lemma which follows 
from Theorem 10 in [4, p. 17]. 

LEMMA 1: If (a, b) = d9 then (2a - 1, 2b - 1) = 2d - 1. 

THEOREM 1: If L(k9 ri) is a prime, then either L(k9 ri) is a Mersenne prime, orn = 
pl and k = p, where p is a prime and t is a positive integer. 

PROOF: If n - 1, then L{k9 1) is a Mersenne prime. So suppose n > 1. If fc 
is not a prime, then k - ab9 where a > 1 and b > I. Then 

L(fc, n)(2n - 1) = 2n7c - 1 = 2n(aZ?) - 1 = (2na)& - 1 

_ /2na - l)(2na(Z?-1) + ••• + 2na + 1) 

= (2n - l)(2n(a'1) + .--. + 2a + 1) 

. (2na(^-l) + ... + 2Wfl + 1 ) . 

Thus, cancelling (2n - 1) from both sides, L(k9 ri) is not a prime; a contradiction. 
Thus k = p for some prime p. 

Next we wish to show that n = pi. Suppose n - pf1 ... pdj and p fi pv for any 
k. Then J * 

L(fc, n)(2n - 1) = (2n)p - 1 = (2P - l)(2p(n-1) +'...+ 1). 

Since (p, n) = 1 , by Lemma 1, (2P - 1, 2n - 1) = 1. It follows that 

(2P - l)\L(k9 ri). 
If (2P - 1) is a proper divisor of L(k9 ri), then £(&, n) is not a prime; a contra-
diction. If 2p - 1 = L(/c, n), then 

1 + 2 + ••• + 2 P - 1 = 1 + 2n + ••• +" (2n) p _ 1; 

impossible, since n > 1. Thus p = p^ for some i. 
Finally, suppose n has more than one prime factor, say n = pax9 x > 1. Hence 

L(fc, n){2n - 1) = (2*)p - 1 = (2P" + 1 ) x - 1 

= (2pa + 1- 1)(..-) = (2pa- i)(...)(•••). 

Since (n, pa+1) = pa
9 it follows from Lemma 1 that 

(2n - 1, 2pa + 1- 1) = 2pa- 1. 
Thus 

(2pa(p-1) + •-. + l)\L(k9 ri). 
If (2pa(p"1) +•••+!) is a proper divisor of L(k9 ri) , thenL(X, ri) is not a prime; 
a contradiction. On the other hand, 

(2Pa(p-D + ... + 1} ^ L ( k > n ) = i + 2 -+• -• + (2n)p~1 

because n > pa. Thus n - pa and this completes the proof. 

For the remainder of this paper, we shall employ the following notation: 

L(p*) = 1 + 2pi + (2pi)2 + ••• •+ (2p i) p"1. 
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REMARK: By looking at the known factors of 2n - 1, the following are prime 
numbers: L(3),L(32), and L(7). The numbers L(33),L(5), L(52),L(72), L(ll)> £(13), 
and L(19) are not primes. 

Motivated by the properties of Fermat and Mersenne numbers, we shall investi-
gate the numbers L(pi) and present a list of unanswered problems concerning L(p^). 

Problem 1. Determine for which primes p there exists a positive integer i for 
which L(pl) is a prime. 

Problem 2. For each prime p, determine all the primes of the form L(p^). 

3. RELATIVELY PRIME 

It is well known [4, pp. 13 and 18] that each pair of Fermat numbers (also the 
Mersenne numbers) are relatively prime. We show below that for i £ j, L(pi) and 
L(pJ) are relatively prime for any prime p. 

The proof of the following lemma can be deduced from Theorem 48 [4, p. 105]. 

LEMMA 2: For each prime p and each positive integer i, pj(L(pi) . 

THEOREM 2: The numbers L(pt) and L(pi + k) are relatively prime, if k > 0. 

PROOF: First we show that for any positive integer j, the numbers L(pj) and 
(2pj- 1) are relatively prime. Suppose m = {L(pJ), (2pJ- 1)). Since 

m\2pJ- 1, m\2p'n- 1 

for any positive integer n. Thus 

m\(2p^p-1) - 1) + (2PJ'(P-2>- i) + ... + (2pJ- 1) + (1 - 1) 

i m p l i e s t h a t m\L(pJ') - p . Hence w|p i m p l i e s m = 1 or p . By Lemma 2 , p\L(pJ) and 
thus m = 1. Now 

2 p i + f c - 1 - 2 ( p i + * - 1 ) p - 1 = ( 2 p " f e _ 1 - l ) ( 2 p i + k " 1 ( p - 1 ) + . . . + 1) 

= ( 2 p i + k_1 - l)L(p* + k - 1 ) = (2 P - l)L(p)L(p2) • • • L C p ^ " 1 ) . 

Suppose the g.c.d. of L(jpl) and L(p'l + k) is d. Since L(p^)|2pl + - 1, it follows 
that d\(2pi + k - 1). But L(pi + k) and (2pi+* - 1) are relatively prime, thus d = 1. 
The proof is complete. 

4. PSEUDOPRIMES 

Recall that a number n is called a pseudoprime if n\2n - 2. It is well known 
[4, p. 115] that each of the Fermat and Mersenne numbers is a pseudoprime. We now 
show that Lip1) is a pseudoprime for each i . But first a lemma is needed. It is 
a consequence of Theorem 48 [4, p. 105]. 

LEMMA 3: For each prime p and each positive integer i, each prime factor of Lip1) 
is of the form 1 + kpL + 1 for some positive integer k. 
THEOREM 3: For each prime p and each positive integer £, L(pl) is a pseudoprime. 

PROOF: By Lemma 3, each prime factor of Lip1) is of the form 1 + kp'L + 1 for 
some positive integer k. Thus, there exists a positive integer x such that 

L(pl) = 1 + xpi + 1 

and hence 
L(p*) - 1 = xp^ + 1. 

Now 
2MP*)-i _ i = 2*pi + 1 - 1 = (2p' + 1 - l)(2pt + 1(x-1) + •-. + 1). 

Since L(p^)(2p"- 1) = (2P" + 1 - 1), it follows that 
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L(pt)\(2pi + 1- 1) 
and hence, from above, 

L(pi)|2W)-i _ 1.. 

ThusLip'1) is a pseudoprime. 

5 . POWERS OF Lip1) 

The Fibonacci sequence is defined recursively: 

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn. • 

It was shown in [1] and [6] that the only Fibonacci squares are F1, F2, and ̂ 12. 
In [3] necessary conditions are given for Fibonacci numbers that are prime powers 
of an integer. It is well known that each Fermat or Mersenne number [2] cannot 
be written as a power (greater than one) of an integer. We shall show that L(3Z) 
also shares this property. However, whether Lip1), for arbitrary p, has this prop-
erty or not is an open question. 

THEOREM 4: Let q and j be positive integers. If L(3i) = qJ', then j = 1. 

PROOF: In fact, we prove a bit more. Let n be a positive integer. Suppose 
1 + 2n + (2n)2 = <7<? and J > 1. Note that q is odd. 

Case 1. j > 1 is odd. Let x = 2n. Then 

x(l + #) = qo - 1 = (4 - 1)(qj ' 1 + ••• + q + 1). 

Since (q - 1) is even, L = (<7J_1 + — + 1) is odd. It follows that 

x\ (q - 1) and x <_ q - 1. 

Hence x+l<q<L;a c o n t r a d i c t i o n . 

Case 2. j > 1 is even. It suffices to take j = 2. Thus 

1 + 2n + (2n)2 = <?2 or 2n(l + 2n) = q2 - 1 = (q - 1) (<? + 1). 

Since both (q - 1) and (q + 1) are even, and 1 + 2n is odd, it follows that 

q - 1 = 2aQ and <? + 1 = 2bV9 

where both Q and 7 are odd and a + b = n. Now 

2 = (<7 + 1) -(q - 1) - 2*7.- 2aC - 2(2Z?"17 - 2a~1Q). 

Hence 1 = 22?~17 - 2a~1Q. It is clear that either a = 1 or b = 1. Suppose a = 1. 
Then 1 + Q = 2Z?~17. If $ = 1, then 2 = 2Z?~17 implies that 7 = 1 , and this cannot 
happen. Thus Q > 1. Now 

2n(l + 2n) = 2e2n_17 = 2n«7, 1 + 2n = QV = 7(2n_27 - 1), 
a n d 7 + 1 = 2n~272 - 2n = 2n"2(72 - 22) = 2n"2(7 - 2)(7 + 2). 

Clearly, this is a contradiction. The case b = 1 is similar. This completes the 
proof. 

We can also show that, for p = 5, 7, 11, L(pO is not the power (greater than 
one) of any positive integer. The general case has, so far, eluded our investi-
gation. It is so intriguing that we shall state it as a conjecture. 

CONJECTURE 1: Let p be an arbitrary prime and q and j be positive integers. If 
L(p*) = qj

9 then J = 1. 
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6. COMMENTS 

Even though each Fermat or Mersenne number is not the power (greater than one) 
of an integer, it is not known whether they are square-free. Naturally, we make 
a similar conjecture. 

CONJECTURE 2: For each prime p and positive integer i9 the number L(pi) is square-
free. 

REMARK: It has been shown in [5] that the congruence 2P~1 E 1 (mod p2) is 
closely related to the square-freeness of the Fermat and Mersenne numbers. We 
have shown, by a similar method, that this is also the case for the numbers L(p^). 

It is well known that (p, 2 P - 1 ) = 1 and (n, 1 + 22 ) = 1. Since the prime 
divisors of Lip1) are of the form 1 + kpt + 1 [4, p. 106], it follows that 

(i, L(p^) = 1. 

Finally, we see that while L(pi) possesses many interesting properties, there 
remain unanswered some very elementary questions about this class of numbers. 
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1. INTRODUCTION 

According to [1, p. 45], the total number of subsets of {l, ..., n} such that 
no two elements are adjacent is Fn+1, where Fn is the nth Fibonacci number, which 
is defined by 

p = F = 1. F - F + F 
C 0 r i l 5 j C n r n-l T r « - 2 * 

The sequence {1, ..., n) can be regarded as the vertex set of the graph Pn in 
Figure 1. Thus, it is natural to define the Fibonacci number f(X) of a (simple) 
graph X with vertex set V and edge set E to be the total number of subsets 5 of 7 
such that any two vertices of S are not adjacent. 

The Fibonacci number of a graph X is the same as the number of complete (in-
duced) subgraphs of the complement graph of X. (Our terminology covers the empty 
graph also.) 


