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1. INTRODUCTION 

A powerful number has been defined by Golomb [3] to be a positive integer 
with the property that whenever the prime p divides r9 p2 divides r. In this pa-
per, we show that every nonzero integer can be written as the difference of two 
relatively prime powerful numbers in infinitely many ways. 

Let P(jn19 m2) = m1 - m2.» where mx and m2 are powerful numbers, k = m1 - m2 is 
said to be a proper representation of k by P If (jnl9 m2) = 1, and an improper rep-
resentation if (ml9 m2) > 1. 

It has been shown that there exist infinitely many proper representations of 
k by P if k = 1 or 4 [3], if k = 2 [6], or if k is a prime congruent to 1 modulo 8 
[4]. It is also lenown [3] that there is at least one proper representation of each 
odd integer and each multiple of 8 by P. Golomb has conjectured that there are 
infinitely many integers that cannot be written as the difference of two powerful 
numbers. Our principal result in this paper disproves this conjecture, showing 
that, in fact, every integer ^ 0 has infinitely many representations as the dif-
ference of relatively prime powerful numbers. 

2. THE DIOPHANTINE EQUATION x2 - Dy2 = n 

Our approach involves showing that corresponding to a given positive integer 
n f. 2 (mod 4) there exists an integer D such that 

(1) x2 - Dy2 = n 
has an infinitude of solutions x9 y for which D\y. 

(1) has been extensively studied (see [5] or [7]), and it is well known that 
if p, q is a solution of (1), where D is not a square, and u, v is a solution of 
the Pell equation x2 - Dy2 = 1, then pu + Dqv9 pv + qu is also a solution of (1). 
It follows that (1) has an infinitude of solutions when one solution exists, since 
the Pell equation has infinitely many solutions: if u9 V is a solution of x2 -
Dy2 = 1, then so is Xj9 y-9 where 

Xj + y./D = (u + V/DY , j = 1, 2, 3, ..., 
that is, where 

(2) x6 =ui+ J:({)uj-kVkDk/\ 
k = 2 

and 

(3) y. -jV-^+g^y-W*-1"2. 
[The index ranges over even values of k in (2) and odd values in (3).] 

We will find it convenient to make the following definition, 

DEFINITION: If p, q is a solution of (1) and u9 V is a solution of x2 - Dy2 = 1, 
pu + Dqv9 pv + qu is a Type A solution of (1) if u is odd, v is even, and D\pv + 
qu. 
THEOREM 1: Let p, q be a solution of (1) and.x0, y0 be a solution of x2 - Dy2 -
±1. Then (1) has infinitely many Type A solutions if d = (2py09 D) implies d\q. 
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PROOF: Let x± = x2 + Dy2
Q and y1 = 2x0y0. Then x\ - Dy\ = 1, z/i is even, and 

x1 is odd. Replacing u by xx and y by y± in (2) and (3) yields solutions 

Xj = pxj + Dqz^, 7,- = pẑ - + ^ 

of (1) w i t h Xj odd and 2/ • even for j = 1, 2S3 , . . . . Now, Z^Y^ i f 

0 .= Yj- E pz^- + qx j E pjx^"1z/1 + qxf E x3
1'1(py1j + qx±) (mod 0) . 

Since x\ - Dy\ =• 1, ( x l s Z?) = 1, so ZJJY^ i f 

0 E (p i / 1 ) j + .qx1 E (2xQyQp)j + qOr2 + % 2 ) = (2x0yQp)j + qx2. (modD) . 

Solutions of this linear congruence exist if and only if (2xQy0p9 D) divides qx\. 
Since a:2 - T)y\ = ±1 implies (x0, D) = 1, it follows that if (2y0p9 D) divides 
q9j = b (mod D) for some integer b and Xb + tD9 ^b+tv ^s a TYPe A solution, of (1) 
for £ = 1 , 2 , 3 , . . . . 

We observe at this point that if u, v is a solution of x2 - Z)z/2 = 1, and p and 
q are relatively prime integers, then pu + Dqv and pt; + qu are relatively prime 
integers, for if d = (pu + J9qy, pt; + qu), then <i divides u(pz; + qu) - y(pu + Dqv) = 
<7 and d divides u(pu + ZJqi;) - vD(pv + qu) = p, which implies that £? = 1. 

THEOREM 2: If n E -1, 0, or 1 (mod 4), there exists an odd integer D such that 
x2 .- Dy2 = n has infinitely many relatively prime Type A solutions. 

PROOF: The proof involves making a judicious choice for D in each of the 
three cases. In each case, we identify a solution p, q of (1) and a solution 
x0, i/0 of a;2 - Dz/2 = +1. D is odd in each of the three cases and is clearly not 
a square; it is then shown that (pu0, D) = 1, assuring, by Theorem 1, that (1) has 
infinitely many Type A solutions, and that (p, q) = 1, making the solutions rela-
tively prime. 

Case 1. n = 4k - 1, k = 1, 2, 3, ... . We choose Z) = 16k2 - 8k + 5. If p, 
q, xQ9 and z/0 are chosen, respectively, to be 8k2 - 6k + 2, 2k - 1, 32k3 - 24k2 + 
12k - 2, and 8k2 - 4k + 1, then p2 - Dq2 = 4k - 1, and a?g •- Zh/g = -1. Let dQ = 
(p, £>).' We find that d0 divides 4(0 - 2p) - [ (D - 2p)2 - D] = 8, so d0 = 1. Let 
d-i ~ 0/o» D) • Since d^ divides D - 2y0 = 3, and D t 0 (mod 3) for any k, <ix = 1. 
Let d2 = (p, <?). Since d2 divides (4k - l)q - p = -1, d2 ~ 1. 

Case_2_» n = 4k + 1, k = 2, 3, 4, . . . . We choose £ = 4k2 - 4k - 1. If p9 q9 
xQ9 and z/o are chosen, respectively, to be 2k, 1, 4k2 - 4k, and 2k - 1, then p2 -
Dq2 = 4k + 1 and x2 - Pz/2. = 1. Let d0 = (p, Z?) . Since d0 divides p2 - 2p - D = 1, 
d0 - I. (yo9 D) and (p, q) are obviously equal to 1. 

Because D = 4k2- 4k - 1 is negative when fc = 0 or 1, we treat n = 1 and n = 5 
separately, by considering x2 - 3z/2 = 1 and #2 - llzy2 = 5 . x2 - 3y2 = 1 is satis-
fied by p9q and x09y0 If p = x0 = 2 and q.= y0 = 1. If p = 4, q = 1, x0= 10, and 
z/0 = 3, then p2 - llq2 = 5 and x\ - llz/2, = 1. Clearly, in both cases, (pz/0, Z)) 
and (p, q) equal 1. 

Case 3. n = 4k, k = 1, 25 3, ... . We choose D = 4k2 + 1. If p, q, x0, and 
z/o are chosen, respectively, to be 2k + 1, 1, 2k, and 1, then p2 - £>q2 = 4k and 
^o " % o = _ 1 ' « L e t ^ = (P^o* ̂ ) • s i n c e ^ divides D - (2k - l)py0 = 2, <i = 1. Ob-
viously, (p, q) = 1. 

Since the proof gives no clue as to how the polynomials D were found, it might 
be helpful to mention that they were discovered, essentially, as a result of a 
process which began in an examination of the continued fraction expansion of vm9 
where m is a polynomial whose continued fraction has a relatively small period 
(<_ 10). The interested reader might consult Chrystalfs Algebra [2] and the paper 
by Boutin [!•].-
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3. APPLICATION TO POWERFUL NUMBERS 

THEOREM 3: If n is any integer ^ 0, there exist infinitely many relatively prime 
pairs m-y and m2 of powerful numbers such that n - mx - m2» 

PROOF: If Xj9 Yj is a Type A solution of x2 - Dy2 = n, n + 2 (mod 4), then 
mx - X2 and m2 = DY2 are powerful numbers whose difference is n. Since in each of 
the three cases of Theorem 2 p and q were shown to be relatively prime, Xj and Yj 
and, hence, m1 and m2 are relatively prime. 

If n = 2 (mod 4), we let n = 2 + kt and consider the equation of Case 2 of 
Theorem 2: x2 - Dy2 = 4fc + 1. Since n2/4 = 4(t2 + t) + 1, there exist infinitely 
many relatively prime Type A solutions Xj , Yj of x2 - Dy2 = n2/4, where D = 3, if 
t = 0, and 9 0 o 

£ = 4(t2 + t)2 - 4(t2 + t) - 1, if t > 1. 
Let m1 = Jj + n/2 and 77?2 = X/ - n/2. We observe that since, for all k in Case 2, 
p is even and q is odd, and since Xj, 7j is a Type A solution, Xj is even and Yj 
is odd. Thus m^ and tf?2 are odd. It follows immediately that (m19 m2) = 1: any 
common divisor of mx and m2 must be odd and must divide rri\ + tf?2 - 2X3- and ?7?i - m2 
= n, but (Xj , Yj) = 1 and X2 - P72 = n2/4 imply that (Xj, n) = 1. Since m ^ = 
Z)J2 is a powerful number, so is each of mx and 77?2 • Hence n = m± - m2 is the dif-
ference of two relatively prime powerful numbers. 

The theorem is obviously true when n is negative, since n = m1 - m2 implies 
-n = m2 - rn±. 

COROLLARY: Let S denote the set of all squarefree integers and n be any integer. 
n has infinitely many improper representations by P if n t S. If n £ S9 n has no 
improper representations by P. 

PROOF: Assume n £ S. If n - 0, the result is obvious. If n ^ 0, there exists 
a prime p and an integer m ̂  0 such that n = mp2. By Theorem 3, there exist in-
finitely many pairs of powerful numbers m1 and m2 such that m = mx - m2. Then, 
n = tf?ip2 - ̂ 2p2j t n e difference of two powerful numbers. Conversely, if n has an 
improper representation by P, then n is divisible by the square of an integer and 
is not in S. 

Example 1. 9 - mx - m2. The equation x2 - ly2 - 9 has Type A solutions 

^2 + 7t » ^2+7t • 

For t - 0, we obtain 

m1 == X2. = (214372)2 = 24 • 535932 and m2 = 7J2 = 7(81025)2 = 54 • 73 • 4632. 

Example 2. 6 = m1 - m2. Since 6 = 2 (mod 4) and 62/4 = 9, we again use x2 -
ly2 = 9. Letting m1 = X2 + 3 - 214375 = 5* • 73 and m2 = J2 - 3 = 214369 = 4632, 
w e h a v e 54 * 73 - 4632 = 6. 
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