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In a previous paper [1], the author proved the following theorem. 

THEOREM 1: Let 

Then we have 

5<w> *>) = H \z\ (u - 3> a n integer). 
k = o ^u I 

(a) B(u9 0) = [0, u]9 
B(u, 1) = [0, u - 1, u + 1]. 

(b) Suppose B(u, f) = [a0, a19 . .., a n]. Then 

B(u, v + 1) = [a0, a19 ... j-an_lf an.+ 1, an - 1, an_19 an_2, ..., a2, a j , 

Repeated application of this theorem generates the continued fraction for 

B(u9 oo) •m-For examples we find 

(1) BO, °°) - [0, 2, 5, 3, 3, 1, 3S 5," 3, 1, 5, 3, 1, . . . ] 9 

(2) 5 (u 9 °°) = [0, u - 19 w + 2, u 9 u 9 u - 29 u9 u + 2, ' u, u - 2, . . . ] . 

Recently, Bergman [2] provided an explicit, nonrecursive description of the 
partial quotients in (1), and by implication, in (2). (This description is our 
Theorem 3.) The purpose of this paper is to prove Bergman's result, and to pro-
vide similar results for the continued fractions given in [3] and [4]. 

We start off with some terminology about "strings." By a string9 we mean a 
(finite or infinite) ordered sequence of symbols. Thus, for example, we may con-
sider the partial quotients 

[<ZQ $ &i 9 • • • 9 CLn\ 

of a continued fraction to be a string. If w and x are strings, then by wx9 the 
concatenation of w with x9 we mean the juxtaposition of the elements of w with 
those of x. By \w\ 9 we mean the length of w9 i.e., the number of symbols in w. 
Note that |i<;| may be either 0 or oo. If w is a finite string, then by wR

9 the re-
versal of w9 we mean the symbols of w taken in reverse order. Finally, by the 
symbol Wn, we mean the string 

WWW ... W 

n times 

By w°9 we mean the empty string, denoted by 0, with the property that w$ = 0W = w. 
Note that, (WE)* = xRWE

9 and so (wR)n = (wn)R. 

THEOREM 2: Let AQ and B be finite strings. Define An + i = AnBA%. Let the symbol 
Am stand for the unique infinite string of which AQ9 A19 . .. are all prefixes. 

Then Am = X1Y1X2Y2X3Y3... where 

(a) Xk - {\l " k ±S ° dd 
if k is even9 

(b) Yk \ B if k t S. 



78 EXPLICIT DESCRIPTIONS OF SOME CONTINUED FRACTIONS [Feb. 

and 
S ~ {n ^ li n - 2Z(I + 2j) , i , j integers _> 0 and j is odd} 

= {3, 6, 7, 11, 12, 14,-15, ...}. 

To prove this result, we need a lemma. 

LEMMA 1: Let A0, An9 and B be as in Theorem 2. Then 

where by the symbol B* we mean either B or B^. 

PROOF: We use induction on n. Clearly, the lemma is true for n = 0. Assume 
true for n. Then we find 

= W 0 B ^ ^B*) 2 n + 1 ^A^A* 

and the proof of the lemma is complete. 

We can now prove Theorem 2. Part (a) follows immediately from the lemma. To 
prove part (b) we will prove, by induction on n9 that the theorem is true for all 
k £ 2\ ' 

Clearly, part (b) is true for n = 0. Assume true for all k £ 2n. Then we wish 
to show part (b) Is true for all k such that 2n < k £ 2n+1. 

Assume 2n < k < 2n + 1. Since An + 1 = AnBA*9 we see that if Yk = BR then "J2„ + 1 _ ?< = 
B; similarly, if 7fe = B then J2„ + 1 _fe = BR. 

We note that every positive integer can be written uniquely in the form 

"2*(1 + 2J), 

where i and j are nonnegative integers. Thus, it suffices to show that (for 2n < 
k < 2n + 1) if k = 2*(1 + 2j), then 2n + 1 .- fc = 2^(1 + 2jf), where j and j' are of 
opposite parity. 

If 2n < k < 2n + 1
9 then the largest power of 2 dividing k is 2""1; hence, 0 £ 

i £ n - 1. Therefore, 

: 2n + 1 - fc = 2 n + 1 - 2*(1 +-2j) = 2*(2n+1~i - 1. - 2j) 

= 2*(1 + 2(2""'* - J - 1)) = 2*'(1 + 2jf). 

But n - i >_ 1; hence, j and j ' are indeed of opposite parity. 
Finally, we must examine the case k = 2n+1. But it is easy to see from Lemma 

1 that Yk = B if k is a power of 2. 
Now that we have built up some machinery, we can state and prove the explicit 

description of the continued fraction for B(u9 °°). 

THEOREM 3 (Bergman): 

B(u9 oo) =. [0,. u - 1, U19 V19 U29 V29 U39 V39 ...] 
where 

f (u + 2, u) if. k is odd 
k ((w, w + 2) if k is even, 

= ( (w, u - 2) if fc £ S 
k \ (u - 29 u) If k e S. 

S is as in Theorem 2. 

Bergman*s result follows immediately from Theorem 2 and the following lemma. 

LEMMA 2; Let AQ = (u + 2, w) ; B = (u, u - 2); let An and ^ be as in Theorem 2. 
Then 

(a) B(u9 V + 2) = [0, M - 1, iy, w - 1], 
(b) B(u9 oo) = [0, u - 1, 4 J . 
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PROOF: To prove part (a), we use induction on v. From Theorem 1, we have 

B(u9 2) = [0, u - 1, u + 2, u9 u - 1] = [0, u - 1, AQ9 u - 1]. 
Hence, the lemma is true for v - 0. 

Now assume true for v. We have 

B(u9 V + 2) = [09 u - 1, Av9 u - 1]. 
But by Theorem 1, 

B(u, v + 3) = [0, u - 1, Ay, u, w - 2, A*9 u - 1] 

B(w, y + 3) = [0, u - 1, 4tf+1, w - 1]. 

This proves part (a) of the lemma. To prove part (b) , we simply let v approach oo 
in both sides of (3). 

Note: Lemma 2 was independently discovered by M. Kmosek [5]. 

These results provide a different proof of the fact, proved in [1], that 
B{u9 oo) is not a quadratic irrational. This is an implication of the following 
more general result. 

THEOREM 4: Let AQ9 B9 AnS and A^ be as in Theorem 2, A0 and B not both empty. 
Then A*, is eventually periodic if and only if B is a palindrome. 

PROOF: We say the infinite string w is eventually periodic if and only if 
w = xym where, by the symbol y° °  , we mean the infinite string yyyy.. . . The string 
y is called the repeating portion, or the period. 

Suppose B is a palindrome. Then by Lemma 1, 

But B = BR; so B* always equals B. Hence, 

A*, = (A0BAR
0By. 

Now assume A^ is eventually periodic, i.e., AM = xy°°. Since 

\An\ = 2n(|A0| + \B\) - \B\9 

we may choose n such that \x\ <_ \An\ • Then since AnBAR is a prefix of ^4^, we may 
assume (by renaming x and y9 if necessary) that x = An. 

Now let s = Z/'4M' + 'B'. Clearly, 4oo = X£/°°  = xz°°. If z/ is a repeating portion, 
then, so is s. The string s consists of groups of B*A*Ts; hence, if we can show 
that groups of B*A%' s repeat only if 5 = BE

9 we will be done. 
By renaming "An

u to be "AQ9" we may use the result given in Theorem 2 to de-
scribe the positions of the S's in Am. We will show that for all integers i J> 1, 
there exist Oi z S and di i S such that <?£ - d^ = i. This shows that in Am there 
exists a 5 and a BR exactly \z\ symbols apart; hence, if z really is a repeating 
portion, we must have B = BR. 

Let i be written in base 2 as a string of ones and zeros. Then, clearly, for 
some m J> 0, n >_ 1, this expression has the form 

z 0 ln 0m
9 

where z is an arbitrary string of ones and zeros. 
Let Qi be the number represented by the binary string z 1 ln 0m and let di be 

the number represented by 1 0" 0m. Then, clearly, oi - d± = i9 and it is easily 
verified that Oi e S and di t S. 

Thus, B = BE and Theorem 4 is proved. 

Note: Theorem 4 was stated without proof in [6]. 

COROLLARY 1: B(u9 °°) is not a quadratic irrational. 
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PROOF: From Lemma 29 we have B(u$ °°) = [09 u - 19 Am] 9 where A0 = (u •+ 2, u) 
and B = (w, w - 2) . Since 5 ^ BR

9 Aoo cannot be eventually periodic, Hence9 by a 
well-known theorem (see Hardy & Wright [7]), B(u3 °°) is not a quadratic irrational. 

COROLLARY 2: Suppose each element x of the strings A0 and B satisfies 0 <_ x < b9 
where b is an integer _> 2. Then we may consider Am to be the base b representa-
tion of a number between 0 and 1. Then Theorem 4 implies that this number is ir-
rational if and only if B - BR. 

As the last result of this paper, we state a theorem giving a description sim-
ilar to that in Theorem 3 for another type of continued fraction. 

In [3] and [4]9 the following result is proved. 

THEOREM 5: Let {e(k)}k=o be a sequence of positive integers such that c(v + 1) J> 
2e(v) for all v _> v'. Let d{v) = o(v + 1) - 2c(v). Define S(u, v) as"follows: 

V 

S(u9 v) = ̂ T u~c(k) (u _> 29 an integer). 

Then, if v >_vf and S(u9 v) = [a0s al9 — 9 an] and n is even, 

S(u9 v + 1) = [aQ9- al9 . . . 9 an9 ud^v) - 19 1, an - 1, an_1$ an_29 ..., a29 a j . 

It is possible to use the techniques above to get an explicit description of 
the continued fraction for S(u9 °°) similar to that for B(u9 °°) . This description 
is somewhat more complicated due to the extra terms given in Theorem 5. If we 
assume that vf = 09 a(v + 1) > 2a(v) and u >_39 then the description becomes some-
what more manageable. 

THEOREM 6; Let S(u9 °°) = lim S(u9 v) . Let us write n = 2in (1 + 2j„) where in and 
j n are nonnegative integers; however, put j n ™ -1 for n = 0. Define p(n), the 
parity of an integer n as 0 if n is even, and 1 if n is odd. Then under the sim-
plifying assumptions of the previous paragraph, 

S(us «>) = [0, AQ9 B19 C19 B29 A19 B39 C29 Bh9 A29 B 5, . . . ] , 

where 
An - (uc(0) + pQ'n) - 2, 1, ud( 0 ) - 1, uaW - p(n)) 

Cn = (uc(0) - p(n)s ud ( 0 )- 1, l,^(f l ) - 1 - p(jn)) 

( (udil + in)~ 1, 1) if j„ is even, 

I (1, u^1"1"^- 1) if j n is odd. 

PROOF; The proof is a straightforward (though tedious) application of previous 
techniques, and is omitted here. 
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1. INTRODUCTION 

A natural number n is called perfect, multiperfect5 or quasip.erfect according 
as o(n) = 2n9 a(ft) = kn (k _> 2, an integer), or a(ft) = 2n-f 1, respectively, where 
o(n) is the sum of the positive divisors of ft. 

No odd multiperfect numbers are known. In many papers concerned with odd per-
fect numbers (summarized in McDaniel & Hagis [5]), values have been obtained which 
cannot be taken by the even exponents on the prime factors of such numbers, if all 
those exponents are equal. McDaniel [4] has given results of a similar nature for 
odd multiperfect numbers. 

No quasiperfect numbers have been found. It is known [Cattaneo [1]) that if 
there are any they must be odd perfect squares, and it has recently been shown by 
Hagis & Cohen [3] that such a number must have at least seven distinct prime fac-
tors and must exceed 1035. In this paper we shall give results analogous to those 
described for odd multiperfect numbers, but with extra generality. In particular, 
we shall show that no perfect fourth power is quasiperfect, and no perfect sixth 
power, prime to 3, is quasiperfect. We are unable to prove the nonexistence of 
quasiperfect numbers of the form m2, where m is squarefree, but will show that any 
such numbers must have more than 230,000 distinct prime factors, so the chance of 
finding any is slight! 

All italicized letters here denote nonnegative integers, with p and q primes, 
p > 2. 

2. SOME LEMMAS 

The following result is due to Cattaneo [1]. 

LEMMA 1: If ft is quasiperfect and pja(ft), then r = 1 or 3 (mod 8). 

We shall need 

LEMMA 2: Suppose ft is quasiperfect and p2a || ft. If q \ 2a + 1, then 

(q - l)(p + 1) = 0 or 4 (mod 16). 

PROOF: Notice first that if b is odd, then, modulo 8, 

(1) oip*-1) = 1 + p + p2 + ••• + p& _ 1 = 1 + (p + 1) + -•- + (p + 1) 

= 1 + k(b - Dip + 1). 

Let Fd (̂ ) denote the cyclotomic polynomial of order d* It is well known that 

?" - 1 = EFd(0 (m > 0), 
s o d\m 

(2) dp2) = n Fd(P). 
d\2a+ 1 

d> 1 


