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PROBLEMS 

H-339 Proposed by Charles R. Wall, Trident Technical College, Charleston, CA 

A dyadic rational is a proper fraction whose denominator is a power of 
2. Prove that 1/4 and 3/4 are the only dyadic rationals in the classical 
Cantor ternary set of numbers representable in base three using only 0 and 2 
as digits. 

H-340 Proposed by Verner E. Hoggatt, Jr. (Deceased.) 

Let A2 = B9 Ah = C9 and A2n + i* = A2n ~ A2n + 2 (n = 1, 2, 3, . . . ) . Show: 

a. A2n = (~l)n + 1(Fn_2B - F^C). 

b. If A2n > 0 for all n > 05 then B/C = (1 + /5)/2. 

H-341 Proposed by Paul S. Bruckman, Corcord, CA 

Find the real roots, in exact radicals, of the polynomial equation 

(1) p(x) E x 6 - 4x5 + lxh - 9x3 + 7x2 - kx + 1 = 0. 

SOLUTIONS 

Once Again 

Professor M. S. Klamkin has pointed out that this problem was proposed 
previously by him (Amer. Math. Monthly 59 (1952):471]. It also appears in an 
article by W. E. Briggs, S. Chowla, A. J. Kempner, and W. E. Mientka entitled 
M0n Some Infinite Series," Soripta Math. 21 (1955):28-30. 
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H-320 Proposed by Paul S. Bruckman, Concord CA 
(Vol. 18, No. 4, December 1980) 

Let 
oo 

C(s) = 2n"s» Re(s) > 1> the Riemann Zeta function. 
M - l 

Also, let 
n 

Hn = X) k"1, w = 1, 2, 3, ..., the harmonic sequence. 
fc -1 

Show that 
t % = 25(3). 

n-l ft 

Solution by C. Georghiou, University of Patras, Patras, Greece 
Method I: Clearly, the series converges; let S denote its sum. We note that 

K - ±k-> - £(£ - j ^ ) --twTTn) - -njy^a -t)dy 

and 

~ If* x3~1e'xdx 

»-i- U s ; ^o 1 - e~x 

where T(s) is the Gamma function. 
Then 

*-£%--£: C^lo*\-»dt • • f i ( q i o « v ^ 
n - i n2 n = i i 0 n * ; 0 n = iVn / £ 

. / l o g 2 ( l - *), ^ s i n c e £ l^-..iog(l - t) for |*[ < 1, 
Jo V n-l n 

and the interchange of the summation and integration signs is permissible. 
Setting t = 1 - e~x in the last integral, we get 

~~2e-xdx 
e ^ - 2C(3). 

-co 

/ • • £ 

-'o 1 -a; 
/0 1 " 5 

Method 11: Clearly, the series converges; let S denote its sum. We note that 

n 0° / -. -I \ oo 

Hn = £y=
k?^ • F + ^ ) = £ k(fc+«)-

Define a l s o 

Then - 2 

#n - E k" 2 and # 2 = ^(2) - E2
n. 

k = l 

Hn = jT, , the series 22 — converges, and we denote its sum by S. 
fc-i (k + ft)2 »-i n 
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The following hold true: 

(i) E - S. 
n=1 (n + l)2 

Indeed, by rearranging the above series, we get 

oc "-n °° -j ° ° 1 °° -. °° . oo Hk _ 

2^ - = 2^ — 2^ i7 = 2^ i7 2^ ~ ~ 2-# "ir = S; 
n = 1 (n + 1) n-i (n 4- l)2fc = i K *-i ;< » - i (n + fc) * = 1 

( i i ) 5 = C(3) + ~S. 

Indeed , w i t h H. = 0, 

oo — + # , O O T oo H ^ oo # 

n = i n z n = i n d n = i nz «-i (n + 1). 

which, by means of (i) establishes (ii). 

( i i i ) IS = 5 . 

Indeed, 

_ oo Hn co oo , °° °° 1 1 / 7> \ I/ 1 \ I 

S " ,?i ~ " S, £„(„ + *>* " «?. £ JFWT^) " ̂ T^l ) j 

from which (iii) follows. 
Combining (ii) and (iii), we have S = 2^(3). 

Also solved by L. Carlitz, A. G. Shannon, and the proposer. 

Big Deal 

H-321 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
(Vol. 18, No. 4, December 1980) 

Establish the identity 

C1.W + Fn ~ <£l2r + Le, + L,r " » ^Liz* + FL 2, > 

+ (£20r + L16r + ^ r + 3)(^ + 10r + F%
n + hr) 

~ (i2„r - L
20r + L12r + 2LSr " ^(^n + sr + F« + 6r) 

= 40(-l)"n An-
i = ± 
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Solution by Paul S. Bruckman, Concord, CA 

Let 

(1) <Kn, r ) = Fs
n + 1,r + F*.- Ar(F6

n+12r + F* + 2r) + B (F* + 1 0 r + Fs
n + ,r) 

-6r — r' (F 6 + F6 ^ 
where 
(2) A r = L12r + L 8 r + L 4 r - lr 

(3 ) Bv - L2Qr + -^i6r ~*~ ^ 4 r ~*~ 3 ; 

( 4 ) C;p = Z/21+r - L 2 0 r + Ir122» + 2^8r ~ 1. 

We make repeated use of the following identities: 

(5) ^2u^2v = ^2u + 2v + ^2u-2v » 

(6) Fm
6 = 5 ' 3 {£ 6 m - e C - l f L ^ + 15L2m - 2 0 ( - l ) m } . 

I t i s a t e d i o u s bu t s t r a i g h t f o r w a r d e x e r c i s e t o prove t he fo l lowing i d e n t i -
t i e s , by means of ( 5 ) : 

(7) Lmkr ~ ArL1Qkr + BrLskr - CrL2kr = 0, k = 1, 2, 3 . 

Let 

(8) Ur = Cr - Br + Av - 1. 

We n o t e t h a t 

l25F2
2rFlFl - V*r ~ 2 ) ( £ 8 r " 2 ) ( L 1 2 , - 2) 

= \Lkr - 2 ) ( L 2 0 r + -^^r ~ 2 L 1 2 r - 2L8 r + 4) 

= L2i+r - 2L 2 0 r - Lier + 2L122, + 3LQr - 6 
( a f t e r s i m p l i f i c a t i o n ) 

= O ^ r - £20r + £12* + 2L*r " X) ~ (L20r + ^ISr + ^ r + 3> 

+ ^ 1 2 , + ^ r + £ , , - 1) - 1 

or 

(9) Z7 = 125F2 F 2 F 2 . 
Now 

125<|>(n, 3?) = £6n+84r + £'6n " 6 (-1) n L 4 n + 5 6 r - 6( - l )"Li + n + 1 5 £ 2 n + 2 8 r + 15L2n 

- 4 0 ( - l ) n 

- i4r{L6n+72r + -^6n+12r ~ 6 ( - l ) Li+n + i+83" - 6 ( - l ) L^n+Qr 

+ 15L2n + 2^ + 15L2n + ,r - 40(-l)n} 

+ 15L2n+20P + 15L2n+8r - 40(-l)n} 
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Cr^Sn+k8r + L6n+36r ~ 6 ( - l ) Li+n+32r " 6 ( _ 1 ) " ^ 4 * + 2 i ^ 

[using (6)] 
+ 1 5 ^ + 16, + 1 5 ^ n + l 2 , " *0(-l)»} 

^ 6 n + i + 2 r ^ 4 2r ^ r ^ 3 0r + 5r^l8r ^r^er^ 

- 6 ( 1 ) ^ l + n + 28i» (L28r "" ^2-^2 Or + BrLl2r " ^V^r ) 

+ 40(-l)n(-l + 4 r - 3r + Cr) 

[using (5) repeatedly once again, and factoring] 

= 40(-l)n[/2, [using (7) and (8)], or as a result of (9), 

(10) <|>(n, r) = 40(-l)nF^F^F^. Q.E.D. 

Also solved by the proposer. 

Two Much 

H-322 Proposed by Andreas N. Phillppou, American Univ. of Beirut, Lebanon 
(Vol. 19, No. 1, February 1981) 

For each fixed integer k >_ 2, define the ̂ -Fibonacci sequence f by 

and 

J n 
(k) 

n KK.J 
Jo 

[ f(^ + • J n-1 ^ 

fik\ + • 
J n-1 

= 0, f™ 

• • + f„(fe) 

- + ^ 

= l , 

i f 2 £ n £ fe, 

if n >. k + 1. 
Show the following: 

(a) /„(k) = 2r 

(b) fn
(H < 2r 

if 2 <. n < k + 1; 

if n >_ k + 2; 

(c) E (/f)/2n) - 2*-1. 

Solution by the proposer 

For 2 _< n _< /c, 

2 j?(k) _ 2n-2f(k) »'* and /<*"> - /<*> + 
(fe+1) "* 

which establish (a). Next, for n >_ k + 1, 

.00 ?(fc) .<*) (fc) 

+ f™ - 2f (*> ,fc-i 

.(*) /» = fn-i + ••• + / n . f c and / n - 1 - fn_2 + ••• + fn 
,(*> 

so that 

(1) 
,(*0 = 0Ak) __ „(fc) 
J n

 AJ n-l Jn-l- k (n >_ k + 1), 

,(k) Taking n = k + 2 in (1), (a) implies /fcv+2 = 2^ - 1 < 2k, which verifies (b) 
for n = k + 2. Assume now '/m^ < 2m for some integer m (>_ k + 3). It then 
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follows by (1) and the positivity of ff^ (i J> 1), that 

Jm+l zim Jm-k L 9 

and this proves (b). Using (1) again, we get 

(ff)/2n) - Cf<*)1/2B+1) = (/„(.\)/2B+1) > 0 ( n > k + 1). 
Therefore, 

(2) 11m (ff} /2") = 0. 
n + oo " 

m 

Setting s^ = /J (/n /2n) (m ̂ L 1) , and using (1) and (a), we get, after some 
algebra, n = 1 

(3) 8<« = 2*'1 - (2k + 1 - l)(/f)/2m) + £ (f,f)i/2'"-i) (m >. fc + 2). 
i = l 

Relations (2) and (3) give lim s^ = 2 ~1, and this shows (c). 
m -> oo 

Remark 1: For fc = 2, (b) reduces to Fn < 2n"2 if n _> 4. (Fuchs [2] proposed 
and Scott [4] proved Fn < 2n~2 if n >_ 5). 

Remark 2: For k = 2, (c) reduces to 2(^n/2n) = 2, a result obtained by Lind 
n-l 

[3] in order to solve a problem of Brown [1], 

References 
1. J. L. Brown. Problem B-118. The Fibonacci Quarterly 5, no. 3 (1967):287. 
2. J. A. Fuchs. Problem B-39. The Fibonacci Quarterly 2, no. 2 (1964): 154. 
3. D. Lind. Solution of Problem B-118. The Fibonacci Quarterly 6, no. 2 

(1968):186. 
4. B. Scott. Solution of Problem B-39. The Fibonacci Quarterly 2, no. 3 

(1964):327. 

Also solved by P. Bruckman and L. Somer. 

A Common Recurrence 

H-323 Proposed by Paul Bruckman, Concord, CA 
(Vol. 19, No. 1, February 1981) 

Let (con)°^ and Q/M)^ be two sequences satisfying the common recurrence 

(1) p(E)zn = 0, 

where p is a monic polynomial of degree 2, and E = 1 +A is the unit right-shift 
operator of finite difference theory. Show that 

(2) xnyn+i - xn+iyn
 = (p(o))n(^0^i " x i^ 0 )> n = o, i , 2, . . . . 

Generalize to the case where p is of degree e >_ 1. 

Solution by the proposer. 
We solve the general case, with p any monic polynomial of degree e >.!. 

Suppose 
(„U) }°°  f„(2) \°°  /(e) \°°  
\<»n I 0 ' \^n i 0 » •••s \<> n J o 
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are sequences satisfying the common recursion (1). We seek to evaluate Caso-
rati's Determinant 

(3) Dn 

,<D 

,(D 

,(2) 

,(2) 

~ U ) „(2) 
n+e-1 ^n+e-i 

,(*> 

,<*> 

,(«> 

Let Un = {(zji\-i))e*e be the matrix whose determinant is Dn; also, de-
fine the e X e matrix J as follows: 

(4) 

J = 

0 
0 
0 

1 
0 
0 

0 
1 
0 

0 
0 
1 

0 0 0 0 ... 1 

-p(0) -p'(0)/l! -p"(0)/2! -p'"(0)/3! ... -p(e _ 1 ) (0) / (e - 1) ! 

(5) 

Note that p has the Maclaurin Series expansion 

po-t^Sia... 
r=0 

Therefore, the sequences (s„ ) 0 (& = 1» 2, ..., e ) satisfy the 
sion 

common recur-

P = O * " ? =o 

since p is monic, p (e) (0)/e! = 1, and hence 

(6) L«I p? *r, (n = 0, 1, 2, . . . ) . 

We now observe, using (3), (4), and (6), that 

(7) J • Un = Z7n+1, n = 0, 1, 2, ... . 

It follows by an easy induction that 

(8) Un = JnUQS n = 0, 1, 2, ... . 

We may evaluate \j\ along the first column of J, and we find readily 
that \j\ = (-l)e_1(-p(0)) = (-l)ep(0). Therefore, taking determinants in (8) 
yields: 

Wn £o> 
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(9) Dn - {(-l)ep(O)}nZ)0, n = 0, 1, 2, ... . 

This is the desired generalization of (2). Many interesting identities 
arise by specializing further. For example, taking 

p(z) = z2 - z - 1, (xn) = (Fn)9 and (z/„) = (L„) , 

yields: 

(10) FnIn+ 1 - Fn+1Ln = 2C-1)""1, n - 0, 1, 2 

***** 

ERRATA 

In the article "On the Fibonacci Numbers Minus One" by G. Geldenhuys, 
Volume 19, no. 5, the following two errors appear on pages 456 and 457: 

1. The recurrence relation (1), which appears as 

D1 = 1 + y, D2 = (1 - y ) 2 , and Dn = (1 + y ) ^ . ! - \iDn_3 for n >_ 3 

should read 

D± = 1 + y, Z?2 = (1 + y ) 2 , and Dn = (1 + u)Z?n-1 - y£>„_3 for n _> 3; 

2. The alternative recurrence relation (4), which appears as 

Vm - 0»-i " ^-2 = 1 for m > 3 

should read 

Vm " V^m-i - ̂ m-2 = 1 for m' >. 3. 

We thank Professor Geldenhuys for bringing this to our attention. 

***** 


