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Abstract 

The numbers 

A{m, k, s, r) = [Vw+1E*(ga? + r)JT_n, 

where V = 1 - E"1, EJf(x) = f(x + j), u_x = ux when 0 <_ x <_ k and u_x - 0 other-
wise, (y)m - y(y - 1) .•• (y - m + 1), are the subject of this paper. Recur-
rence relations, generating functions, and certain other properties of these 
numbers are obtained. They have many similarities with the Eulerian numbers 

A 7 - JLrvm+1Fkrm1 

and give in particular (i) the number Cm,ni8 of compositions of n with exactly 
m parts, no one of which is greater than s, (ii) the number Qs,mQ<) of sets 
{ix, i2» •••» ^m) with in £{l» 2, ..., s} (repetitions allowed) and showing 
exactly k increases between adjacent elements, and (iii) the number Qs>m(r9 k) 
of those sets which have i1 = v. Also, they are related to the numbers 

G(m9 n, s, r) = -^-[kn(sx + r)m]x = Q, A = E - 1, 

used by Gould and Hopper [11] as coefficients in a generalization of the Her-
mite polynomials, and to the Euler numbers and the tangent-coefficients Tm. 
Moreover, lim s~mm\A(m9 k9 s9 su) = Amt k u9 where 

S -*• ±oo ' * 

A„.k.u = ;frrV,+1E*fa + u) m U. n 

is the Dwyer [8, 9] cumulative numbers; in particular, 

lim s~mm\A{m9 k9 s) = Am k9 A(m9 k9 s) = A(m9 k9 s9 0). 
8 +±oo 

Finally, some applications in statistics are briefly discussed. 
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1. Introduction 

A partition of a positive integer n is a collection of positive integers, 
without regard to order, whose sum is equal to n. The corresponding ordered 
collections are called "compositions" of n. The integers collected to form a 
partition (or composition) are called its "parts" (cf. MacMahon [14, Vol. I, 
p. 150] and Riordan [16, p. 124]). The compositions with exactly m parts, no 
one of which is greater than s, have generating function 

and therefore the number Cm,n, 8 of compositions of n with exactly m parts, no 
one of which is greater than s9 is given by the sum 

"•» " • • • • • - & ( - , ) ' (")(" " . - i * 0 -
where k = [(n - m)Is], the integral part of (n - m)/s. 

Compositions of this type arose in the following Montmort-Moivre problem 
(cf. Jordan [12, p. 140] and [13, p. 449]): Consider m urns each with s balls 
bearing the numbers 1, 2, ..., s. Suppose that one ball is drawn from each 
urn and let 

m 

z = E *i 
be the sum of the selected numbers. Then the probability p(n; m, s) that Z is 
equal to n is given by 

(1.2) p(n; m, s) = s~mCms n> s, n = m9 m + 1, ..., sm. 

Carlitz, Roselle, and Scoville [4] proved that the number QsymOO* of sets 
{£l5 i2> »''3 ^m} with in z {l, 2, ..., s} (repetitions allowed) and showing 
exactly k increases between adjacent elements, is given by 

d.3) Q..mW-£l-i)<(m+
1
l)(B<*-*l+m-1). 

and the number QSj m(r9 k) of those sets which have i,1 - v is given by 

d.4) 0...(r. k) = *E (-I)'(J )(S(fc " J' " i'.V + " " ')• 
The next problem is from applied statistics: Dwyer [8,9] studied the prob-

lem of computing the ordinary moments of a frequency distribution with the use 
of the cumulative totals and certain sequences of numbers. These numbers are 
the coefficients ̂ a . r of the expansion of (x + r)m into a series of factor-
ials (x + k)m, k = 0, 1, 2, ...,77?; that is, 

m 

(* + ̂  = E 4m, fe,pto +.7W - k)mlm\ 
k = o 

Using the notation u_x = ux with 0 <_ x <_ k and u_x - 0 otherwise, he proved that 



,,. ON THE ENUMERATION OF CERTAIN COMPOSITIONS fM 

• AND RELATED SEQUENCES OF NUMBERS imy 

(1.5) . A m , k , r = [V^E^Qr + r)m] r_ 0 = £ (-l)J(m + M(fc - .j +r)".. 
k 

Z 
These numbers for r = 0 reduce to the Eulerian numbers 

(1.6) A n . k - [V"+1EV]«.o = E (-^'(^ * X ) ^ " ^m' 
j-o. x J ' 

In the present paper9 starting from the problem of computing the factorial 
moments of a frequency distribution with the use of cumulative totals, we in-
troduce the numbers 

(1.7) A(jn, k, s, r) = ±-[Vm+1Ek(sx + r).]..n 

so that 
m 

(1.8) (s# + r)m = 2 ^(m> &» *»• i»)(a: + m - fe).m. 
fe = o 

These numbers have many similarities with the Eulerian numbers (cf, Carlitz 
[1]). They are related to the numbers Cmtn>8 of the title of this paper by 

Cm.n.a = A(m - 1, k - 1, 8, v + m - 1) = (-ir--\A(m - 1, fc - 1, -s,-r - 1), 

fc = [ (n - m ) / s ] , 

3? = (n - w) - s[ (n - w ) / s ] , 

and t o t h e numbers Q8tm(^9 k) by 

Q8tm(r, k) = i4{m - 1, fc - 1, s , r + m - 2) = ( - l ) 7 " " 1 ^ ^ - 1, .fc - 1, - s , - r ) , 

and t h e i r p r o p e r t i e s a r e d i s c u s s e d in S e c t i o n s 2 and 3 below. Since 

i t fo l lows t h a t 

•Sa^tfO = 4 ( ^ k - 1 , 8, s + m - 1) = ( - l ) M ( m , k; - 8 ) , 

where i4(m, /c, s) = ,4(777, k9 s, 0 ) . Section 4 is devoted to the discussion of 
certain statistical applications of the numbers A(m9 k9 s , r ) . 

2. The Composition Numbers A[m9 k, s, r) 

Let {x)mtb - x(x - b) . .. (x - mb + b) denote the generalized falling fac-
torial of degree m with increment b; the usual falling factorial of degree m 
will be denoted by ( x ) m = 0*0 m,i' The Problem of expressing the generalized 
factorial { x ) m , b in terms of the generalized factorials (x + ka)m,a9 k = 09 1, 
2, ...,m of the same degree arises in statistics in connection with the prob-
lem of expressing the generalized factorial moments in terms of the cumula-
tions (see Dwyer [8, 9] and Section 4 below). More generally, let 

m 

(2.1) (x + rb)nub = £ Cm, k, r(a9 b){x + (m - k)a)m>a. 
k=>o 
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Following Dwyer, define u^ = ux when 0 <_ x <_ k and u_x = 0 otherwise. More-
over, let Ea denote the displacement operator defined by Eafix) = fix + a) and 
Va = 1 - Ea1, the receding difference operator; when; a = 1, we write E r =• E 
and Vx E V. Then, from (2.1), we have 

(2.2) (* + rfr)m^ - IC». t , , (a,i)(a+ (w'-fe)g^ 3. 
& = 0 ' 

Since 
\amml, k = n ? 

[Vm+1E2(x + (m - W a ) B , f l ] 8 . 0 =1 
I 0 , 0 <_ fc < n or n < k <_ m, 

we g e t , from ( 2 . 2 ) 
rr~m t 

cm, k, , ( a , w = fr[va
m+1Ea

k(£^Lz*)m> 6]«-o-
These coefficients may be expressed in terms of the operators V and E and the 
usual falling factorials by using the relations 

Va"+xE*/0B) = Vm+1Ekf(ax), (ax + vb)m,b = b™ (ax + x>)„, s = alb. 
We find 

cm,k, r(a> b) = s~mA{m, k, s , r ) , s = alb, 
where 
( 2 . 3 ) Aim, k, s, r) = -~-[\Jm+1Ekjsx + r ) X . n / i c = 0, 1, . . . , w, 

" m = 0, 1, 2, . . . . 
Hence 

m 

( 2 . 4 ) fo + rb)m fc = 2 s'm4(77z, fc, s , r ) ( x + (m - k)a)m,a9 s = a/2? 
fe = o or 

m 

( 2 . 5 ) (arc + r)m = 2 ^C777' &> s » r ) ( f e + 7 7 7 - fc)w. 
fc = 0 

Using the symbolic formula 

we get, for the numbers (2.3), the explicit expression 

(2.6) A(jn,k,s,r) =' ]£<-»< (™ 1%'* r f + % 

It is easily seen that 

(2.7) Aim, k, -s, -r) = i-l)mAim, k, s , r+m- 1), 

and, also, that the numbers Aim, k, s, r) are integers when s and r are inte-
gers. Moreover, Aim, k, s, r) = 0 when k > m. 
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Remarks 2.1: As we have noted in the introduction, the number CmtntS of com-
positions of n with exactly m parts, none of which is greater than s is given 
by 

(2-8) Cmtn>s = E <-!>'(")(" ~m"f i * ) . k = [<n -m)/s]. 

Comparing (2.8) with (2.6) and using (2.1), we get the relation 

(2.9) CmtniS= A(m - 1, k9 s , v + m - 1) 

= {-l)m'1A{m - 1, k, -s9 -v - 1), r = (n - m) - s[(n - m)/s], 

which justifies the title of this section. 
Since the number Qs,m('^9 k), of sets {il9 i2* •••> ^m) with in e {l, 2, 

..., s} (repetitions allowed) and showing exactly k increases between adjacent 
elements which have ix = p, is given by (see [4]) 

(2.io) Q.,m<r, k) = j E < - i ) ' ( S ) ( a ( * " 1 ~ f _V + m ' % 
we get, by virtue of (2.6), the relation 

(2.11) Qs,m(r, k) = A(jn - 1, k - 1, s, r + m - 2) 

= (-l)ffl"1A(wi - 1, k - 1, -8, -r). 

These numbers give in particular the numbers 

k 

(2.12) Qs,m(k) = EC-U'f" .J 'X 3 ^ ~ ' V ™ ~ *) 
restriction i1 = r. \ 

,mQQ. = es,m+]_(s, k>» 

J 

of the above sets without the restriction ix = r. We have 

and hence 

(2.13) efl,m(k) = i*(m,- fc - 1, s, s + m - 1) = (-l)mA(m9 k9 -s), 

where 

(2.14) A(m, k, s) = ̂ -[V"+1Efc(ear)m]x.0 = £ (-l)'(m +. l){s{k ~ J)). 

Since 

it follows that 

£ <-< j : ) r -«+') - .;?>•>'"(•; or v+1 
and (2.6) may be rewritten as follows: 



iQooi 0N THE ENUMERATION OF CERTAIN COMPOSITIONS 
J AND RELATED SEQUENCES OF NUMBERS 137 

m + l 
A(m, k, s, r) = £ (-iy' + 1(m + l)(8^k ~ 3) + A 

_ "y* f_if+itm + l\/-s(m - fe + 1 - i) + r\ 

= m'y1(-l)i(m + 1)(8^" - k + l - i ) + m - r - l \ 

Hence 

A(w, fe, s, r) = i4(m, m - k + 1, s, wz - r - 1) + O - ^ L !! £ + 'l)(m) 

= i-D'AOn. »-*+!. -s, *) + (-1)^ » + * ̂  . 

In particular 

(2.16) A(m9 k9 s) = (-l)mA(m9 m - k + 1, -s) , 

which should be compared with the symmetric property of the Eulerian numbers 
"•m, k = "-m, m- k + \ • 

Using the relation 

(m + 2)(s(k - j) + v - m) = (sk - m + r)(mt ̂  - (8(m - k + 2) + m - r)(™ + J), 

we get9 from (2.6), the recurrence relation 

(2.17) (m + 1)4 (m + 1, k9 s9 r) 

= (sk - m + r)A(m9 k9 s9 r) + {s(m - k + 1) + m - r)A(m9 k - 1, s, r) 

with initial conditions 

4(0, 0, s, r) = 1, A(m9 0, s, r) = (*j, TW.> 0. 

From (2.5), we have 
m 

(s(k - j) + r)m = £ 4 0??, m - i9 k - j, r) (s + £)OT. 

i = 0 

Hence (2.6) may be rewritten as 
k 

A(rn,k,s,r)--i(-iy(my)(S«-f+r) 

= i^fV) £ (8 +
m

l)Mm, m - i, k-j, r) 

- f(8!i)Z:(-lW'nt W m - i , fc-j. r). 
i = 0 X A" ' J = 0 X ^ ' 
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and putting 
k 

(2.18) B(m, n, k9. .r) = £ (-lW™ t 1)A,(PI9 n, k - j9 P) 

we get 

(2.19) Mm9 k9 s, r>,- E T * * W m , W - i9 k9 P) , 
i = o \ r/n I 

and 
(2.20) B(m, n, k, r) = £ £ (-l)i + '(m + ̂  + l)^n " *>» " ̂  + * ) . 

It is clear from (2.20) that 

(2.21) B{m, n9 k9 P ) = B(m9 k9 n9 p). 

Since 

{""I 2)(my)((n-i)(k-j)+r-m) 

- <n* - m + r)(™ J ̂  + X) - (»QH - * + .2) + m - r)(m t ; 1 ) ^ + }j 

- (fcOn - „ + 2) + m - r)(m. +_ ^)(m +. X) 

+ ( < * - « + 2) On - fc + 2) - m + r)(™ t j)(j ! J). 

it follows, from (2.20), that 

(2.22) {m + l)B(m + 1, n, fc, P ) 

= (n/c - m + r)B(m9 n, fe, p) + (n{m - k + 2) + m - r)B(m9 n, 7c - 1, P) 

'"+ (fc(m - n'+ 2) + m - v)B(jn9 n - 1, ft, P) 

+ ((m - n + 2)(/H - k + 2) - m + r)B(m9 n - 1, fc - 1, P) . 

with 
B(0, 0, 0, p) == 1, £(0, 0, ft, P) = £(0, ft, 0, P ) = 0. 

Remark 2.2: Comparing (2.20) with the formula 

giving the number of permutations on m letters which have n jumps and require 
k readings (cf. [4]), we find 

(2.23) Rm(n9 ft) = B'(m9 n, ft, m - 1) = B(m9 m - n + 1, k) 

- B(rn9 n9 m - k + 1), 

where 

(2.24) B(m, n, *) E B(m, ,, 'fc, 0) = & t ^ l f * ^ * 1 ) ^ J * )((W" *><* " *>) • 
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Using the relation 

j : !.«-»'*'(" I'X" J 1)(0,"*>.<*"i0)-
rf.r+ii^r+i } \ i A 3 ) \ m ) ' 

it can be easily shown that 

(2.25) B(m, n, k)=B(m, m - n + 1, m- k + 1). 

Expanding the generalized factorial (x+ rb)m,b in terms of the generalized 
factorials (x+ka}m,a9 k = 09 1, 2, .. ., m and then these factorials in terms 
of the factorials (x+jb)m,b, j = 0, 1, 2, . . . , m, by using (2.4), we get 

m 
(x + rf>)m>ib = J ] a'mbmA(m9 m - k, alb, r) (x + ka)m,a 

fc«0 
mm 

= E E 4 .On, m -'fc, a/fc, I'Mlm, w? - j , i / a , &).'(# + jb)m b 

k - 0 j *. 0 

m m 
= £ H ^ O " , m - fe, alb, v)A{m, m - j , b/a, r)(x + jfc) . , 

j - 0 fc-0 
which implies 
(2.26) ^ ^.(w> w ~ &» a/fr* FMOW, m - j , b/a, r) = 6r i- , 

fe-o J 

with 6rj the Kronecker delta: 6rr = 1, 6rj- = 0, j ^ r. Hence, we have the 
pair of inverse relations 

(2.27) ar = Yl A(m> m - k, a/bs r)$k, $k = J2 A(m, m - k, b/a, r)ar. 

3. Generating Functions and Connection with 
Other Sequences of Numbers 

Consider first the generating function 

(3.1) Am,8,r(t) - 2 X ^ > k9 s, r)tk, 

where the summation is over all possible values of k which are 0 to m and can 
be left indefinite because A(m, k, s, v) is zero elsewhere. Then, from (2.6), 
it follows that 

(3.2) A™,«,,<*) - (1 - t)m+1 i(sk + r)tK 

In a generalization of the Hermite polynomials, Gould and Hopper [ 11 ] used 
as coefficients the numbers 

(3.3) G(m, n, s, r) = -^ £ (-1)"' { (n\ (sj + r)m , 
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which may be equivalently defined by 

G(m9 n9 s, v) = -^j[t\n (sx + r)m]x = 0. 

Using the symbolic formula 

= 0 n-0 W 

and since [Ek(sx + r)m]g;mQ = (sk + v)m9 we get 

m 

(3.4) (sk + r)m = £ £(^> n> s, v)(k)n. 
n = 0 

The generating function (3.2) may then be rewritten as 

m j 

Am,..,(*) = £ ^ ( m , n, s, r)tra(l - t)"-", 
n = 0 "<• 

so that 
(3.5) A(m9 k, s, P ) = Eo(-l)*"njf(^ I ̂ ( m ,"n, s, P ) . 

Since for r = 0 the numbers G(m9 n9 s9 r) reduce to the numbers 

C(jn9 n9 s) = -^j[kn(sx)m]x=0 

studied by the author [5, 6, 7] and also by Carlitz [2] as degenerate Stirling 
numbers, we have, in particular, 

(3.6) A(m9 k9 s) = £ (-Dk"nSf(!J I k)C(m> n> S)' 

The generating functions 

(3 .7 ) Ae,r{t, x) = £ E A(jn, k, s, r)tkxm 

m±Q k=0 

and 
(3 .8 ) As(t9 x9 y) = £ £ f ^ f a , fc, s , r)tkyrxm

9 
m= 0 r = 0 & = o 

using (3.2), may be obtained as 

(3 .9 ) * a i p ( * . . ) - d - t ) [ i + ( i - t ) g r a 

1 - £[1 + (1 - t)x]s 

(3.10) As(t9 x9 y) = (1 " *} . 
{1 - t[l + (1 - t)x]s}{l - y[l + (1 - t ) x ] } 

Since 11m A8t r(t9 x) = (1 - s x ) " 1 , we ge t 

(3 .11) Am>3i , ( 1 ) = £ i ( n , &, s , r ) = s m . 
fc = o 
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Using (2.19) and (2.21), (3.11) may be rewritten in the form 

m m + 1i . 

sm = E E r ' L )B(m, m - i + 1, k, v) 
fc = 0 i = l \ "l / 

m m+1 J . v 

- E E r ' ' >(^5 i, m - fc +1, p) 
k = 0 i = l \ m / 

= E „ " E B(m, i, m - k + 1, v). 

It is known that the Eulerian numbers Am i satisfy the relation (see [19] 
or [1]) 

£(,+i-'K 

(3-14) Am,Str(t) - E T „ "JB,,. „.<.,(*) 
and 

Therefore 
m + i 

(3 .12) . ^ Bfa , £ , fc, r) = i 4 W i i . 

The g e n e r a t i n g func t i on 
m 

(3 .13) £ m s n > 2 , ( £ ) = E B ( m , n , fc, p ) t k 

fc = o 
is connected with Am> Sj r (t) by the relations 

E (s + ^ 

(3.15) Bn, „,,(*) = ZX-D'f"} V , , . ^ ^ * ) . 
j-o \ «/ / 

Returning to (2.6), let us put r = sw. Then 

(3 .16) l im s""mM(/n, fc, s , r ) = 4m, &,«, 
S -*• ±oo 

where 
4,.*.« - [Vm+1Efefa+u)-]_n = E(-D^'(mt XW +u - j)" 

are the numbers used by Dwyer [8] for computing the ordinary moments of a fre-
quency distribution. In particulars 

(3.17) lim s-mm\A(m9 k, s) = Am k. 
S -* ± 00 ' 

Consider the function 

(3.18) Hm(t; s, r) = (1 - * ) " X , «. P(*)' 

= E £rff(m,.n, s, r)t"(l - t)" n . 
nsQ m. 

Then, using (3.3), we get 

(3.19) H(x; i, s9 r) = E#m(*; s, a?)** = (1 - t) (1 + x)r[l - t(l + a?)*]""1. 
m = 0 
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Since lim H(x/s; -1, s9 su) = E(x; u), where 
8 -*• ± <» 

(3.20) E(x; u) = Y, Em(u)xm = 2e*w/(l + ex) 
m- 0 

is the generating function of the Euler polynomials ([12, p. 309]), it follows 
that for the polynomials 

m 
Cm(u; s) = ffm(-l; s, su) = 2"m 2 (-l)k4fa> fc, 8, su) 

£ = 0 
we have 

lim s"mt>m(u9 s) = Em(u), 
S -*- ± oo 

which, on using (3.16), gives 
m 

(3.21) £ (-D^m.fc.u - 2mm\Em(u) 
k = 0 

and, in particular, 
m 

(3.22) E(-D f c ^.fc.i/2-^. 
& = o 

where Em = 2mm\Em(l/2) is the Euler number ([12, p. 300]). 
Putting u = 0 in (3.21), we get 

m 

(3-23) £(-l)"Vfc = 2'^ 
fc = 0 

where Tm = 2mm\Em{0) is the tangent-coefficient ([12, p. 298]). 

Remark 3.1: The degenerate Eulerian numbers Amtk{\) introduced by Carlitz [2, 
3] by their generating function 

(3.24) i + £ f r £ 4 m . k < x ) t * = — - — — 
m-1 m' k-1 1 - £[1 + Xx(l - t)]1/X 

are related to the numbers 

A(m9 k9 s) = i4(77?, Zc, s, 0). 

Indeed, comparing (3.24) with (3.9), we get 

A(m9 k, s) = — Amtk{s-1). 

4. Applications in Statistics 

The numbers A(m, k9 s9 r) like the Eulerian numbers Am,-k seem to have many 
applications in combinatorics and statistics. Special cases of these numbers 
have already occurred in certain combinatorial problems, as was noted in the 
introduction. In this section, we briefly discuss three applications in sta-
tistics. The first is in the computation of the factorial moments of a fre-
quency distribution with the use of cumulative totals. This method was sug-
gested by Dwyer [8, 9] for the computation of the ordinary moments, as an 
alternative to the usual elementary method and, therefore, for details, the 
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reader is referred to this work. We only note that the main advantage of this 
method is that the many multiplications involved in the usual process are re-
placed by continued addition. Let fx denote the frequency distribution and 

Cm + 1fx = C(Cmfx)9 m = 1, 2, 3, ..., Cfx ^hfj* 

the successive frequency cumulations. Then, from the successive cumulation 
theorem of Dwyer, we get9 for the factorial moments, 

k m 

(4.1) £ (ax + r)mfsx+r = £ m\A(jn, n, s, v)Cm+1fsn+I,. 
x-0 n=0 

When r = 0, i.e., when the factorial moments are measured about the smallest 
variate, (4.1) reduces to 

k m 

(4.2) Z^x)mfsx= T,m\A{m, n, s)Cm+1fsn, 
rc= 0 n = 0 

which for s = 1, i.e., when the distance between successive variates (class 
marks) is unity, gives ([8, §9]) 

k m 

(4.3) Z&)mfx = £m!il<m, n, l)Cm+1fn -mlC»i\, 
x=0 n=0 

since A(m9 m9 1) = 1, A(m9 n , l ) = 0 if n # m. 
The second statistical application of the numbers A(m9 k9 s9 r) is in the 

following problem: Let X1, X2, ..., Xm be a random sample (that is, m inde-
pendent and identically distributed random variables) from a population with 
a discrete uniform distribution 

p(n; s) = P(X = n) = s"1, n = 0, 1, 2, ..., s - 1. 

Then the probability function of the sum Zm = X
 xi may be obtained as 

i = l 

(4.4) p(n;m>S) = « - £ (-1)* (j )(» + ̂  } ~ 8') 

= s"mA(m - 1, [n/s], s, P + m - 1), 

n = sk + P, 
0 <. r < s. 

Note that the distribution function 

[w] 
F
m 0 fa) = 2 pWs; m9 s) 

n = 0 
of the sum 

m 

Wm=Y*Yi9Yi=s-1Xi9i = l,29...,m 
i = l 

approaches, for s -> oo, the distribution function 
[u] 

Fm(u). x 2(-i)^(J)(M - ' j r 
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of the sum 

m 

i = l 
of m independent continuous uniform random variables on [05 1) (Feller [10] 
and Tanny [18]). 

Since 
E(Zm) = mE(X) = m(s - l)/2, 

Var(Zm) = wVar(J) = m(s2 - 1)/125 

it follows from the central limit theorem (see, e.g., Feller [10]) that the 
sequence 

Zm - m{s - l)/2 

/m(s2 - 1)/12 

converges in distribution to the standard normal. Hence 

lim V s'mA(m - 1, k9 s9 r) = $(g), 
mJhto k = o 

(4.5) 

sw = z/m(s2 - 1)/12 + m(s - l)/2. 

and 

(4.6) lim /w(s2 - l)/12s-m4(/?2 - 1, [zm] , s, r + m - 1) = <p(z) , 
m->oo 

where <̂ (s) and <£>(s) are the density and the cumulative distribution functions 
of the standard normal. 

Finally, consider a random variable X with the logarithmic series distri-
bution 

p(k; 0) = P(X = k) = aQk/k9 k = 1, 2, ..., a"1 = -log(l - 0 ) , 0 < 0 < 1. 

Patil and Wani[15] proved the following property of the moments \im(0) = E(Xm) : 

ym(6) = a(l - QymY,c(m - 2, fc)9k+1, 
fc = o 

where the coefficients satisfy the recurrence relation 

c(m9 k) = (Zc + l)c(m - 1, Zc) + (TH - fc + l)e(w - 1, fc - 1), 
c(0, 0) = 1, <?(m, k) = 09 k > m. 

It is not difficult to see that 

e(m, fc) = Am+Uk+1 

w i t h t h e l a t t e r a E u l e r i a n number. Hence 

y n ( 0 ) = a ( l - 0)~mtAm-i k®k = a ^ " ^ " X - i W -
fc = 0 

A similar result can be obtained for the generalized factorial moments 



1982] ON THE ENUMERATION OF CERTAIN COMPOSITIONS 
AND RELATED SEQUENCES OF NUMBERS 145 

y ( I B . f c ) ( e ) =E[(x)mtb] 

in terms of the numbers AQn, k5 s, r) . Indeed , we have 

y<»;i) (©) = a E(fe)W f ie f c / fe = £ £ (fc - i ) W i J 

as - m + 1 2 (*fc - D^e*, * = zr1, 
fc-l 

and s i n c e , by (2 .17) and ( 2 . 1 8 ) , 
00 

£ ( s f c + P ) ^ * * = (/n - 1)1(1 - tTmAm_ltStV(t), 
k - l 

i t fo l lows t h a t 

(4-7) y ( n , . 6 ) (6) = a s - r a + 1 ( l - BYm (m - 1) lAm_lt s> . , ( 6 ) , 

which, in p a r t i c u l a r , g ive s 

y ( m . D (9) = a ( l - e)"w(m - 1) ! 5>(TTZ - 1. &» 1, - 1 ) 9 * 
k = l 

= a(m - 1) 10^(1 - Qym . 

References 

1. L. Carlitz. "Eulerian Numbers and Polynomials." Math. Mag. 32 (1959): 
247-260. 

2. L. Carlitz. "Degenerate Stirling, Bernoulli and Eulerian Numbers." Uti-
litas Mathematica 15 (1979):51-88. 

3. L. Carlitz. "Some Remarks on the Eulerian Function." Univ. Beograd. Publ. 
Elektrothen. Fak. 3 Ser. Mat. Fiz. 602-633 (1978):79-91. 

4. L. Carlitz, D. P. Roselle, & R. A. Scoville. "Permutations and Sequences 
with Repetitions by Number of Increases." J. Comb. Theory, Series A (1966): 
350-374. 

5. Ch. A. Charalambides. "A New Kind of Numbers Appearing in the n-Fold Con-
volution of Truncated Binomial and Negative Binomial Distributions." SI AM 
J. Appl. Math. 33 (1977):279-288. 

6. Ch. A. Charalambides. "Some Properties and Applications of the Differences 
of the Generalized Factorials." SIAM J. Appl. Math. 36 (1979):273-280. 

7. Ch. A. Charalambides. "The Asymptotic Normality of Certain Combinatorial 
Distributions." Ann. Inst. Statist. Math. 28 (1976):499-506. 

8. P. S. Dwyer. "The Calculation of Moments with the Use of Cumulative To-
tals." Ann. Math. Statist. 9 (1938):288-304. 

9. P. S. Dwyer. "The Cumulative Numbers and Their Polynomials. Ann. Math. 
Statist. 11 (1940):66-71. 

10. W. Feller. An Introduction to Probability Theory and Its Applications. 
2nd. ed. Vol. II. New York: John Wiley & Sons, 1971. 

11. H. W. Gould & A. T. Hopper. "Operational Formulas Connected with Two Gen-
eralizations of the Hermite Polynomials." Duke Math. J. 29 (1962):51-63. 

12. Ch. Jordan. Calculus of Finite Differences. 2nd ed. New York: Chelsea, 
1960. 



146 A GENERALIZATION OF THE GOLDEN SECTION [May 

13. K. Jordan. Chapters on the Classical Calculus of Probability. Akademiai 
Kiadb, Budapest, 1972. 

14. P. A. MacMahon. Combinatory Analysis, Vols. I and II. New York: Chel-
sea, 1960. 

15. G. P. Patil & J. K. Wani. "On Certain Structural Properties of the Loga-
rithmic Series Distribution and the First Type Stirling Distribution." 
Sankhya, Series A, 27 (1965):271-180. 

16. J. Riordan. An Introduction to Combinatorial Analysis. New York: John 
Wiley & Sons, 1958. 

17. J. Riordan. Combinatorial Identities. New York: John Wiley & Sons, 1968. 
18. S. Tanny. "A Probabilistic Interpretation of the Eulerian Numbers." Duke 

Math. J. 40 (1973):717-722; correction, ibid. 41 (1974):689. 
19. J. Worpitzky. "Studien liber die Bernoullischen und Eulershen Zahlen." J. 

Reine Angew. Math. 94 (1883):203-232. 

ick -kick 

A GENERALIZATION OF THE GOLDEN SECTION 

D. H. FOWLER 
University of Warwick, Coventry, England 

(Submitted February 1981) 

Introduction 

It may surprise some people to find that the name "golden section," or, 
more precisely, goldener Schnitt, for the division of a line AB at a point C 
such that AB • CB =-AC2, seems to appear in print for the first time in 1835 in 
the book Die reine Elementar-Mathematik by Martin Ohm, the younger brother of 
the physicist Georg Simon Ohm. By 1849, it had reached the title of a book: 
Der allgemeine goldene Schnitt und sein Zusammenhang mit der harminischen 
Theilung by A. Wiegang. The first use in English appears to have been in the 
ninth edition of the Encyclopaedia Britannica (1875), in an article on Aesthe-
tics by James Sully, in which he refers to the "interesting experimental en-
quiry . . . instituted by Fechner into the alleged superiority of Tthe golden 
section' as a visible proportion. Zeising, the author of this theory, asserts 
that the most pleasing division of a line, say in a cross, is the golden sec-
tion . . . ." The first English use in a purely mathematical context appears 
to be in G. Chrystal's Introduction to Algebra (1898). 

The question of when the name first appeared, in any language, was raised 
by G. Sarton [11] in 1951, who specifically asked if any medieval references 
are known. The Oxford English Dictionary extends Sarton1s list of names and 
references and, by implication, answers this question in the negative. (The 
1933 edition of the OED is a reissue of the New English Dictionary, which ap-
peared in parts between 1897 and 1928, together with a Supplement. The main 
dictionary entry "Golden," in a volume which appeared in 1900, makes no ref-
erence to the golden section, though it does cite mathematical references that 
will be noted later; the entry "Section" (1910) contains a reference to "me-
dial section" (Leslie, Elementary Geometry and Plane Trigonometry, fourth edi-
tion, 1820) and to Chrystal's use of "golden section" noted above. The 1933 


