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Craig M. Cordes [2] and Charles Small [4] proved Theorem 1, a result that 
W. Sierpinski [3] proved, using elementary group theoretic considerations, for 
n being a prime, and J. H. E. Cohn [1, Theorem 7] proved for n - m. Moreover, 
Theorem 1 is implicit in some of the solutions to Problem E2446 in the Ameri-
can Mathematics Monthly (January 1975). 

Throughout this paper, m and n will denote positive integers with m > 1. 

Theorem 1: Let n be greater than 1. The congruence xn =. a (mod m) has a solu-
tion for every integer a if and only if (n, $(m)) = 1 and m is a product of 
distinct primes. 

Let a-L, a2, . . . , am be a complete residue system modulo m. It follows from 
Theorem 1 that a", aj» .••* dm* where n > 1, is a complete residue system mod-
ulo m if and only if (n, <j>07?)) = 1'and m is a product of distinct primes. 

We shall give a simple proof of Theorem 1 and, in addition, prove the fol-
lowing two related results. 

Theorem 2: The following three conditions are equivalent. 

I. The congruence xn = a (mod m) has a solution for every integer a with 

( a 'T^o ) = 1 -
II. The congruence xn = a (modm ) has a solution for every integer a rela-

tively prime to m. 

III. (n, cj>(77z)) = 1-

From Theorem 2, it follows that for a19 a2, ..., a<j,(W) a reduced residue 
system modulo m9 a", a"» •••> ^J(m) i s a reduced residue system modulo m if 
and only if (n, (j)(m)) = 1. 

The following result tightens the equivalence of Theorem 2. 

Theorem 3: Conditions I and II are equivalent. 

I. The congruence xn E a (mod m) has a solution if and only if 

( a 'T^o ) = 1 -
II. (n, cf)(w)) = 1 and pn + 1 j( m for all primes p. 

By Theorem 3, we can, with only the simplest of calculations, write down 
the nth-power residues modulo 77? if (n, §(m))= 1 and pn + 1 j( m for all primes p. 
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We shall now state and prove several results needed for the proofs of 
these three theorems. 

Lemma 4: Let a and n be positive integers. If ( , -, r-| = 1, then there is 
T-i™ ^ _ ^ + „„„£ ^ . V (a, 77Z) / a positive integer t such that 

Proof: Assume (a, -r- r-J = 1 and, for convenience, let d = (a, m). Since 

fa, ̂ j = 1 and (M ̂  j |<|>0w), 

by the Euler-Fermat theorem, 

a*<n> = 1 (mod | ) . ' 

There are positive integers a and t such that nt .-. (n, $0??)) = §{m)o. Thus 

a»t-(». •(».)) = a*(»)» = ! (mod J ) . 

Hence 

an* = a(n'*(m)) (mod m). 

Corollary 5: If (n, <f>(m) ) = 1> then the congruence xn = a (mod m) has a solu-

tion for every integer a with (a, -p r-) = 1. 

Corollary 6: If (ft, §(m) ) = 1 and w is a product of distinct primes, then the 
congruence xn = a (mod m) has a solution for every integer a. 

Corollary 6 follows directly from Lemma 4 since m being a product of dis-

tinct primes implies (a, y ^-y) = 1 for every integer a. 

Lemma 7: If the congruence xn = a (mod tf?) has a solution for every integer a 
relatively prime to m, then (ft, cK^)) = 1. 

Proof: Assume (ft, (J)(̂ )) ̂  1. Thus, there is a prime a such that q\n and 
a |(J)(pe) , where pe| |;72 and p is a prime. We shall show that the assumption p = 
2 leads to a contradiction and that the assumption p > 2 also leads to a con^ 
tradiction. 

First, assume p = 2. Thus, q divides <j)(2e') = 26"1 so q = 2 and g J> 2. 
Choose a such that a = 3 (mod 2e) and a = 1 (mod m/2e). Thus (a, /??) = 1; so, 
by assumption, the congruence xn = a (mod m) has a solution. Since 4|2e and 
2e\m, we have 4|w. Hence, the congruence ;rn = a = 3 (mod 4) has a solution. 
But xn = 3 (mod 4) is impossible, since ft is divisible by q = 2. 

Now assume p > 2. Choose a such that a is a primitive root modulo pe and 
a = 1 (mod mlpe). Thus (a5 m) = ls so there is an integer # such that # n = a 
(mod /??) . Since pe\m9 xn = a (mod pe) . For fc = (J)(pe)/q, afe = ̂ n/c = 1 (mod pe). 



1982] THE CONGRUENCE x" = a (mod m), WHERE (n, <K"0) = 1 131 

The last congruence is true because (J)(pe) = qk9 which divides rik. But afe = 1 
(mod pe) is impossible, since a is a primitive root modulo pe and 

0 < k <,<$)(pe). 

We shall now prove Theorem lv First, assume that the congruence xn = a 
(mod w?) has a solution for every integer a. Thus 0 , 1 , 2 , . .., (77? - 1) 
must be incongruent modulo m. Now if there is a prime p such that p2|w then, 
since n > 1, we would have the contradiction 

0n E 0 E p ) " (mod m). 

Therefore, m must be a product of distinct primes. By Lemma 7, we have that 
(n, (p(m)) = 1. 

Conversely, assume (n, (j)(w)) = 1 and m is a product of distinct primes. 
By Corollary 6, the congruence xn = a (mod m) has a solution for every inte-
ger a. , 

We shall now prove Theorem 2. Since (a, m) = 1 implies (a, -p r-1 = 1, 

II follows from I. The remaining implications—II implies III and III implies 
I—follow from Lemma 7 and Corollary 5, respectively. 

To prove Theorem 3, we need 

Lemma 8: Let a be an integer. If pn + 1 )(m for all primes p and the congruence 

xn = a (mod m) has a solution, then (a, —, rl = 1-
V (a, m) I 

Proof: Assume the congruence xn = a (mod 77?) has a solution and there is a 

prime p such that p\a and p\-( —r-. Choose e such that pe| |m; clearly e <_ n. 

Since p\a and p\m9 p\xn; so pe\xn. From pe 1772 and pe\xn
9 we have that pe\a, so 

pe|(a, 772). But since p k r-, too, we have the contradiction pe+1\rn. 
^ ' y ^ | (a, 77?) 

Finally, we prove Theorem 3. First, assume condition I. Thus, in parti-
cular, the congruence xn = a (mod rn) has a solution for every integer a rela-
tively prime to 777. Hence, by Lemma 7, (n, <\>{m)) = 1. To prove that pn + 1 1777 
for all primes p, assume there is a prime p such that p n + \m. Thus 

= (pn
s — ) > P > 1. 

(pn
s w) 

Therefore, by condition I, the congruence xn = pn (mod 777) has no solution. 
But clearly x = p is a solution to the congruence xn = pn (mod 777) . 

The fact that condition II implies condition I follows from Lemma 8 and 
Corollary 5. 
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Abstract 

The numbers 

A{m, k, s, r) = [Vw+1E*(ga? + r)JT_n, 

where V = 1 - E"1, EJf(x) = f(x + j), u_x = ux when 0 <_ x <_ k and u_x - 0 other-
wise, (y)m - y(y - 1) .•• (y - m + 1), are the subject of this paper. Recur-
rence relations, generating functions, and certain other properties of these 
numbers are obtained. They have many similarities with the Eulerian numbers 

A 7 - JLrvm+1Fkrm1 

and give in particular (i) the number Cm,ni8 of compositions of n with exactly 
m parts, no one of which is greater than s, (ii) the number Qs,mQ<) of sets 
{ix, i2» •••» ^m) with in £{l» 2, ..., s} (repetitions allowed) and showing 
exactly k increases between adjacent elements, and (iii) the number Qs>m(r9 k) 
of those sets which have i1 = v. Also, they are related to the numbers 

G(m9 n, s, r) = -^-[kn(sx + r)m]x = Q, A = E - 1, 

used by Gould and Hopper [11] as coefficients in a generalization of the Her-
mite polynomials, and to the Euler numbers and the tangent-coefficients Tm. 
Moreover, lim s~mm\A(m9 k9 s9 su) = Amt k u9 where 

S -*• ±oo ' * 

A„.k.u = ;frrV,+1E*fa + u) m U. n 

is the Dwyer [8, 9] cumulative numbers; in particular, 

lim s~mm\A{m9 k9 s) = Am k9 A(m9 k9 s) = A(m9 k9 s9 0). 
8 +±oo 

Finally, some applications in statistics are briefly discussed. 


