THE CONGRUENCE $x^{n} \equiv a(\bmod m)$, WHERE $(n, \phi(m))=1$

M. J. DeLEON

Florida Atlantic University, Boca Raton, FL 33431
(Submitted January 1980)

Craig M. Cordes [2] and Charles Small [4] proved Theorem 1, a result that W. Sierpinski [3] proved, using elementary group theoretic considerations, for n being a prime, and J. H. E. Cohn [1, Theorem 7] proved for $n=m$. Moreover, Theorem 1 is implicit in some of the solutions to Problem E2446 in the American Mathematics Monthly (January 1975).

Throughout this paper, m and n will denote positive integers with $m>1$.
Theorem 1: Let n be greater than 1 . The congruence $x^{n} \equiv a(\bmod m)$ has a solution for every integer α if and only if $(n, \phi(m))=1$ and m is a product of distinct primes.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be a complete residue system modulo m. It follows from Theorem 1 that $a_{1}^{n}, a_{2}^{n}, \ldots, a_{m}^{n}$, where $n>1$, is a complete residue system modulo m if and only if $(n, \phi(m))=1$ and m is a product of distinct primes.

We shall give a simple proof of Theorem 1 and, in addition, prove the following two related results.

Theorem 2: The following three conditions are equivalent.
I. The congruence $x^{n} \equiv a(\bmod m)$ has a solution for every integer a with $\left(\alpha, \frac{m}{(\alpha, m)}\right)=1$.
II. The congruence $x^{n} \equiv a(\bmod m)$ has a solution for every integer α relatively prime to m.
III. $(n, \phi(m))=1$.

From Theorem 2, it follows that for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\phi(m)}$ a reduced residue system modulo $m, a_{1}^{n}, a_{2}^{n}, \ldots, a_{\phi(m)}^{n}$ is a reduced residue system modulo m if and only if $(n, \phi(m))=1$.

The following result tightens the equivalence of Theorem 2.
Theorem 3: Conditions I and II are equivalent.
I. The congruence $x^{n} \equiv \alpha(\bmod m)$ has a solution if and only if

$$
\left(a, \frac{m}{(a, m)}\right)=1
$$

II. $(n, \phi(m))=1$ and $p^{n+1} \nmid m$ for all primes p.

By Theorem 3, we can, with only the simplest of calculations, write down the n th-power residues modulo m if $(n, \phi(m))=1$ and $p^{n+1} \nmid m$ for all primes p.

We shall now state and prove several results needed for the proofs of these three theorems.
Lemma 4 : Let a and n be positive integers. $\operatorname{If}\left(, \frac{m}{(\alpha, m)}\right)=1$, then there is
a positive integer t such that

$$
a^{n t} \equiv a^{(n, \phi(m))}(\bmod m)
$$

Proof: Assume $\left(\alpha, \frac{m}{(a, m)}\right)=1$ and, for convenience, let $d=(a, m)$. Since

$$
\left(a, \frac{m}{d}\right)=1 \quad \text { and } \left.\quad \phi\left(\frac{m}{d}\right) \right\rvert\, \phi(m)
$$

by the Euler-Fermat theorem,

$$
a^{\phi(m)} \equiv 1 \quad\left(\bmod \frac{m}{d}\right)
$$

There are positive integers c and t such that $n t-(n, \phi(m))=\phi(m) c$. Thus

$$
\alpha^{n t-(n, \phi(m))} \equiv a^{\phi(m) c} \equiv 1\left(\bmod \frac{m}{d}\right)
$$

Hence

$$
\alpha^{n t} \equiv \alpha^{(n, \phi(m))}(\bmod m)
$$

Corollary 5: If $(n, \phi(m))=1$, then the congruence $x^{n} \equiv a(\bmod m)$ has a solution for every integer a with $\left(\alpha, \frac{m}{(a, m)}\right)=1$.

Corollary 6: If $(n, \phi(m))=1$ and m is a product of distinct primes, then the congruence $x^{n} \equiv \alpha(\bmod m)$ has a solution for every integer α.

Corollary 6 follows directly from Lemma 4 since m being a product of distinct primes implies $\left(\alpha, \frac{m}{(a, m)}\right)=1$ for every integer a.

Lemma 7: If the congruence $x^{n} \equiv \alpha(\bmod m)$ has a solution for every integer a relatively prime to m, then $(n, \phi(m))=1$.

Proof: Assume $(n, \phi(m)) \neq 1$. Thus, there is a prime q such that $q \mid n$ and $q \mid \phi\left(p^{e}\right)$, where $p^{e}| | m$ and p is a prime. We shall show that the assumption $p=$ 2 leads to a contradiction and that the assumption $p>2$ also leads to a contradiction.

First, assume $p=2$. Thus, q divides $\phi\left(2^{e}\right)=2^{e-1}$ so $q=2$ and $e \geq 2$. Choose a such that $a \equiv 3\left(\bmod 2^{e}\right)$ and $\alpha \equiv 1\left(\bmod m / 2^{e}\right)$. Thus $(\alpha, m)=1$; so, by assumption, the congruence $x^{n} \equiv a(\bmod m)$ has a solution. Since $4 \mid 2^{e}$ and $2^{e} \mid m$, we have $4 \mid m$. Hence, the congruence $x^{n} \equiv a \equiv 3$ (mod 4) has a solution. But $x^{n} \equiv 3(\bmod 4)$ is impossible, since n is divisible by $q=2$.

Now assume $p>2$. Choose a such that a is a primitive root modulo p^{e} and $a \equiv 1\left(\bmod m / p^{e}\right)$. Thus $(a, m)=1$, so there is an integer x such that $x^{n} \equiv a$ $(\bmod m)$. Since $p^{e} \mid m, x^{n} \equiv a\left(\bmod p^{e}\right)$. For $k=\phi\left(p^{e}\right) / q, a^{k} \equiv x^{n k} \equiv 1\left(\bmod p^{e}\right)$.

The last congruence is true because $\phi\left(p^{e}\right)=q k$, which divides $n k$. But $a^{k} \equiv 1$ (mod p^{e}) is impossible, since α is a primitive root modulo p^{e} and

$$
0<k<\phi\left(p^{e}\right) .
$$

We shall now prove Theorem 1. First, assume that the congruence $x^{n} \equiv \alpha$ $(\bmod m)$ has a solution for every integer a. Thus $0,1,2, \ldots,(m-1)$ must be incongruent modulo m. Now if there is a prime p such that $p^{2} \mid m$ then, since $n>1$, we would have the contradiction

$$
0^{n} \equiv 0 \equiv\left(\frac{m}{p}\right)^{n} \quad(\bmod m)
$$

Therefore, m must be a product of distinct primes. By Lemma 7, we have that $(n, \phi(m))=1$.

Conversely, assume $(n, \phi(m))=1$ and m is a product of distinct primes. By Corollary 6, the congruence $x^{n} \equiv a(\bmod m)$ has a solution for every integer a.

We shall now prove Theorem 2. Since $(\alpha, m)=1$ implies $\left(\alpha, \frac{m}{(\alpha, m)}\right)=1$, II follows from I. The remaining implications-II implies III and III implies I-follow from Lemma 7 and Corollary 5, respectively.

To prove Theorem 3, we need
Lemma 8: Let a be an integer. If $p^{n+1} \nmid m$ for all primes p and the congruence $x^{n} \equiv a(\bmod m)$ has a solution, then $\left(a, \frac{m}{(a, m)}\right)=1$.

Proof: Assume the congruence $x^{n} \equiv \alpha(\bmod m)$ has a solution and there is a prime p such that $p \mid a$ and $p \left\lvert\, \frac{m}{(a, m)}\right.$. Choose e such that $p^{e} \| m$; clearly $e \leq n$. Since $p \mid a$ and $p|m, p| x^{n}$; so $p^{e} \mid x^{n}$. From $p^{e} \mid m$ and $p^{e} \mid x^{n}$, we have that $p^{e} \mid a$, so $p^{e} \mid(\alpha, m)$. But since $p \left\lvert\, \frac{m}{(\alpha, m)}\right.$, too, we have the contradiction $p^{e+1} \mid m$.

Finally, we prove Theorem 3. First, assume condition I. Thus, in particular, the congruence $x^{n} \equiv a(\bmod m)$ has a solution for every integer a relatively prime to m. Hence, by Lemma 7, $(n, \phi(m))=1$. To prove that $p^{n+1} \nmid m$ for all primes p, assume there is a prime p such that $p^{n+1} \mid m$. Thus

$$
\left(p^{n}, \frac{m}{\left(p^{n}, m\right)}\right)=\left(p^{n}, \frac{m}{p^{n}}\right) \geq p>1
$$

Therefore, by condition I, the congruence $x^{n} \equiv p^{n}(\bmod m)$ has no solution. But clearly $x=p$ is a solution to the congruence $x^{n} \equiv p^{n}(\bmod m)$.

The fact that condition II implies condition I follows from Lemma 8 and Corollary 5.

References

1. John H. E. Cohn. "On m-tic Residues Modulo n." The Fibonacci Quarterly 5, no. 4 (1967):305-318.
2. Craig M. Cordes. "Permutations Mod m in the Form x^{n}." Amer. Math. Monthly 83 (1976):32-33.
3. W. Sierpinski. "Contribution a l'étude des restes cubiques." Ann. Soc. PoZon. Math. 22 (1949):269-272 (1950).
4. Charles Small. "Powers Mod n." Math. Mag. 50 (1977):84-86.

ON THE ENUMERATION OF CERTAIN COMPOSITIONS AND RELATED SEQUENCES OF NUMBERS

CH. A. CHARALAMBIDES

University of Athens, Panepistemiopolis, Athens 621, Greece
(Submitted February 1981)

Abstract

The numbers

$$
A(m, k, s, r)=\left[\nabla^{m+1} E^{k}(\underline{s x+r})_{m}\right]_{x=0},
$$

where $\nabla=1-\mathrm{E}^{-1}, \mathrm{E}^{j} f(x)=f(x+j), \underline{u}_{x}=u_{x}$ when $0 \leq x \leq k$ and $\underline{u}_{x}=0$ otherwise, $(y)_{m}=y(y-1) \ldots(y-m+1)$, are the subject of this paper. Recurrence relations, generating functions, and certain other properties of these numbers are obtained. They have many similarities with the Eulerian numbers

$$
A_{m, k}=\frac{1}{m!}\left[\nabla^{m+1} E^{k} \underline{x}^{m}\right]_{x=0}
$$

and give in particular (i) the number $C_{m, n, s}$ of compositions of n with exactly m parts, no one of which is greater than s, (ii) the number $Q_{s, m}(k)$ of sets $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ with $i_{n} \varepsilon\{1,2, \ldots, s\}$ (repetitions allowed) and showing exactly k increases between adjacent elements, and (iii) the number $Q_{s, m}(r, k)$ of those sets which have $i_{1}=r$. Also, they are related to the numbers

$$
G(m, n, s, r)=\frac{1}{n!}\left[\Delta^{n}(s x+r)_{m}\right]_{x=0}, \Delta=E-1
$$

used by Gould and Hopper [11] as coefficients in a generalization of the Hermite polynomials, and to the Euler numbers and the tangent-coefficients T_{m}. Moreover, $\lim _{s \rightarrow \pm \infty} s^{-m} m!A(m, k, s, s u)=A_{m, k}, u$, where

$$
A_{m, k}, u=\frac{1}{m!}\left[\nabla^{m+1} E^{k}(\underline{x+u})^{m}\right]_{x=0}
$$

is the Dwyer $[8,9]$ cumulative numbers; in particular,

$$
\lim _{s \rightarrow \pm \infty} s^{-m} m!A(m, k, s)=A_{m, k}, A(m, k, s) \equiv A(m, k, s, 0) .
$$

Finally, some applications in statistics are briefly discussed.

