THE CONGRUENCE $x^n \equiv a \pmod{m}$, WHERE $(n, \phi(m)) = 1$

M. J. DeLEON

Florida Atlantic University, Boca Raton, FL 33431 (Submitted January 1980)

Craig M. Cordes [2] and Charles Small [4] proved Theorem 1, a result that W. Sierpinski [3] proved, using elementary group theoretic considerations, for n being a prime, and J. H. E. Cohn [1, Theorem 7] proved for n = m. Moreover, Theorem 1 is implicit in some of the solutions to Problem E2446 in the American Mathematics Monthly (January 1975).

Throughout this paper, m and n will denote positive integers with m > 1.

<u>Theorem 1</u>: Let *n* be greater than 1. The congruence $x^n \equiv a \pmod{m}$ has a solution for every integer *a* if and only if $(n, \phi(m)) = 1$ and *m* is a product of distinct primes.

Let a_1, a_2, \ldots, a_m be a complete residue system modulo m. It follows from Theorem 1 that $a_1^n, a_2^n, \ldots, a_m^n$, where n > 1, is a complete residue system modulo m if and only if $(n, \phi(m)) = 1$ and m is a product of distinct primes. We shall give a simple proof of Theorem 1 and, in addition, prove the fol-

lowing two related results.

Theorem 2: The following three conditions are equivalent.

- I. The congruence $x^n \equiv a \pmod{m}$ has a solution for every integer a with $\left(a, \frac{m}{(a, m)}\right) = 1.$
- II. The congruence $x^n \equiv a \pmod{m}$ has a solution for every integer a relatively prime to m.

III. $(n, \phi(m)) = 1$.

From Theorem 2, it follows that for $a_1, a_2, \ldots, a_{\phi(m)}$ a reduced residue system modulo $m, a_1^n, a_2^n, \ldots, a_{\phi(m)}^n$ is a reduced residue system modulo m if and only if $(n, \phi(m)) = 1$.

The following result tightens the equivalence of Theorem 2.

Theorem 3: Conditions I and II are equivalent.

- I. The congruence $x^n \equiv a \pmod{m}$ has a solution if and only if $\left(a, \frac{m}{(a, m)}\right) = 1.$
- II. $(n, \phi(m)) = 1$ and $p^{n+1} \not\mid m$ for all primes p.

By Theorem 3, we can, with only the simplest of calculations, write down the *n*th-power residues modulo *m* if $(n, \phi(m)) = 1$ and $p^{n+1} \not\mid m$ for all primes *p*.

We shall now state and prove several results needed for the proofs of these three theorems.

Lemma 4: Let a and n be positive integers. If $\left(\begin{array}{c} , \frac{m}{(a, m)} \end{array} \right) = 1$, then there is a positive integer t such that

 a^{nt}

$$\equiv \alpha^{(n,\phi(m))} \pmod{m}.$$

<u>Proof</u>: Assume $\left(a, \frac{m}{(a, m)}\right) = 1$ and, for convenience, let d = (a, m). Since

$$\left(\alpha, \frac{m}{d}\right) = 1$$
 and $\phi\left(\frac{m}{d}\right) |\phi(m)|$,

by the Euler-Fermat theorem,

$$a^{\phi(m)} \equiv 1 \pmod{\frac{m}{d}}.$$

There are positive integers c and t such that $nt - (n, \phi(m)) = \phi(m)c$. Thus

$$a^{nt-(n, \phi(m))} \equiv a^{\phi(m)c} \equiv 1 \pmod{\frac{m}{d}}$$

Hence

$$a^{nt} \equiv a^{(n, \phi(m))} \pmod{m}$$

<u>Corollary 5</u>: If $(n, \phi(m)) = 1$, then the congruence $x^n \equiv a \pmod{m}$ has a solution for every integer a with $\left(a, \frac{m}{(a, m)}\right) = 1$.

<u>Corollary 6</u>: If $(n, \phi(m)) = 1$ and *m* is a product of distinct primes, then the congruence $x^n \equiv a \pmod{m}$ has a solution for every integer *a*.

Corollary 6 follows directly from Lemma 4 since *m* being a product of distinct primes implies $\left(a, \frac{m}{(a, m)}\right) = 1$ for every integer *a*.

Lemma 7: If the congruence $x^n \equiv a \pmod{m}$ has a solution for every integer a relatively prime to m, then $(n, \phi(m)) = 1$.

<u>Proof</u>: Assume $(n, \phi(m)) \neq 1$. Thus, there is a prime q such that $q \mid n$ and $q \mid \phi(p^e)$, where $p^e \mid \mid m$ and p is a prime. We shall show that the assumption p = 2 leads to a contradiction and that the assumption p > 2 also leads to a contradiction.

First, assume p = 2. Thus, q divides $\phi(2^e) = 2^{e-1}$ so q = 2 and $e \ge 2$. Choose a such that $a \equiv 3 \pmod{2^e}$ and $a \equiv 1 \pmod{n/2^e}$. Thus (a, m) = 1; so, by assumption, the congruence $x^n \equiv a \pmod{m}$ has a solution. Since $4|2^e$ and $2^e|m$, we have 4|m. Hence, the congruence $x^n \equiv a \equiv 3 \pmod{4}$ has a solution. But $x^n \equiv 3 \pmod{4}$ is impossible, since n is divisible by q = 2.

Now assume p > 2. Choose a such that a is a primitive root modulo p^e and $a \equiv 1 \pmod{m/p^e}$. Thus (a, m) = 1, so there is an integer x such that $x^n \equiv a \pmod{m}$. Since $p^e \mid m, x^n \equiv a \pmod{p^e}$. For $k = \phi(p^e)/q$, $a^k \equiv x^{nk} \equiv 1 \pmod{p^e}$.

The last congruence is true because $\phi(p^e) = qk$, which divides nk. But $a^k \equiv 1 \pmod{p^e}$ is impossible, since a is a primitive root modulo p^e and

$$0 < k < \phi(p^e)$$
.

We shall now prove Theorem 1. First, assume that the congruence $x^n \equiv a \pmod{m}$ has a solution for every integer a. Thus 0, 1, 2, ..., (m - 1) must be incongruent modulo m. Now if there is a prime p such that $p^2 | m$ then, since n > 1, we would have the contradiction

$$0^n \equiv 0 \equiv \left(\frac{m}{p}\right)^n \pmod{m}$$
.

Therefore, *m* must be a product of distinct primes. By Lemma 7, we have that $(n, \phi(m)) = 1$.

Conversely, assume $(n, \phi(m)) = 1$ and *m* is a product of distinct primes. By Corollary 6, the congruence $x^n \equiv a \pmod{m}$ has a solution for every integer *a*.

We shall now prove Theorem 2. Since $(\alpha, m) = 1$ implies $\left(\alpha, \frac{m}{(\alpha, m)}\right) = 1$, II follows from I. The remaining implications—II implies III and III implies I—follow from Lemma 7 and Corollary 5, respectively.

To prove Theorem 3, we need

19827

<u>Lemma 8</u>: Let α be an integer. If $p^{n+1} \not\mid m$ for all primes p and the congruence $x^n \equiv \alpha \pmod{m}$ has a solution, then $\left(\alpha, \frac{m}{(\alpha, m)}\right) = 1$.

<u>Proof</u>: Assume the congruence $x^n \equiv a \pmod{m}$ has a solution and there is a prime p such that $p \mid a$ and $p \mid \frac{m}{(a, m)}$. Choose e such that $p^e \mid m$; clearly $e \leq n$. Since $p \mid a$ and $p \mid m, p \mid x^n$; so $p^e \mid x^n$. From $p^e \mid m$ and $p^e \mid x^n$, we have that $p^e \mid a$, so $p^e \mid (a, m)$. But since $p \mid \frac{m}{(a, m)}$, too, we have the contradiction $p^{e+1} \mid m$.

Finally, we prove Theorem 3. First, assume condition I. Thus, in particular, the congruence $x^n \equiv a \pmod{m}$ has a solution for every integer a relatively prime to m. Hence, by Lemma 7, $(n, \phi(m)) = 1$. To prove that $p^{n+1} \nmid m$ for all primes p, assume there is a prime p such that $p^{n+1} \mid m$. Thus

$$\left(p^n, \frac{m}{(p^n, m)}\right) = \left(p^n, \frac{m}{p^n}\right) \ge p > 1.$$

Therefore, by condition I, the congruence $x^n \equiv p^n \pmod{m}$ has no solution. But clearly x = p is a solution to the congruence $x^n \equiv p^n \pmod{m}$.

The fact that condition II implies condition I follows from Lemma 8 and Corollary 5.

References

1. John H. E. Cohn. "On *m*-tic Residues Modulo *n*." The Fibonacci Quarterly 5, no. 4 (1967):305-318.

ON THE ENUMERATION OF CERTAIN COMPOSITIONS AND RELATED SEQUENCES OF NUMBERS

- Craig M. Cordes. "Permutations Mod m in the Form xⁿ." Amer. Math. Monthly 83 (1976):32-33.
- W. Sierpinski. "Contribution a l'étude des restes cubiques." Ann. Soc. Polon. Math. 22 (1949):269-272 (1950).

4. Charles Small. "Powers Mod n." Math. Mag. 50 (1977):84-86.

ON THE ENUMERATION OF CERTAIN COMPOSITIONS AND RELATED SEQUENCES OF NUMBERS

CH. A. CHARALAMBIDES University of Athens, Panepistemiopolis, Athens 621, Greece (Submitted February 1981)

Abstract

The numbers

$A(m, k, s, r) = [\nabla^{m+1} E^k (\underline{sx + r})_m]_{x=0},$

where $\nabla = 1 - E^{-1}$, $E^{j}f(x) = f(x + j)$, $u_x = u_x$ when $0 \le x \le k$ and $u_x = 0$ otherwise, $(y)_m = y(y - 1) \ldots (y - m + 1)$, are the subject of this paper. Recurrence relations, generating functions, and certain other properties of these numbers are obtained. They have many similarities with the Eulerian numbers

$$A_{m,k} = \frac{1}{m!} [\nabla^{m+1} \mathsf{E}^k \underline{x}^m]_{x=0},$$

and give in particular (i) the number $C_{m,n,s}$ of compositions of n with exactly m parts, no one of which is greater than s, (ii) the number $Q_{s,m}(k)$ of sets $\{i_1, i_2, \ldots, i_m\}$ with $i_n \in \{1, 2, \ldots, s\}$ (repetitions allowed) and showing exactly k increases between adjacent elements, and (iii) the number $Q_{s,m}(r, k)$ of those sets which have $i_1 = r$. Also, they are related to the numbers

$$G(m, n, s, r) = \frac{1}{n!} [\Delta^n (sx + r)_m]_{x=0}, \Delta = E - 1,$$

used by Gould and Hopper [11] as coefficients in a generalization of the Hermite polynomials, and to the Euler numbers and the tangent-coefficients T_m . Moreover, $\lim_{s \to \pm\infty} s^{-m}m!A(m, k, s, su) = A_m, k, u$, where

$$A_{m, k, u} = \frac{1}{m!} [\nabla^{m+1} \mathsf{E}^{k} (\underline{x + u})^{m}]_{x=0}$$

is the Dwyer [8, 9] cumulative numbers; in particular,

$$\lim_{s \to \pm \infty} s^{-m} m! A(m, k, s) = A_{m,k}, A(m, k, s) \equiv A(m, k, s, 0).$$

Finally, some applications in statistics are briefly discussed.