$$
D_{n}=\left\{(-1)^{e} p(0)\right\}^{n} D_{0}, n=0,1,2, \ldots .
$$

This is the desired generalization of (2). Many interesting identities arise by specializing further. For example, taking

$$
p(z)=z^{2}-z-1,\left(x_{n}\right)=\left(F_{n}\right), \text { and }\left(y_{n}\right)=\left(L_{n}\right),
$$

yields:

$$
\begin{equation*}
F_{n} L_{n+1}-F_{n+1} L_{n}=2(-1)^{n-1}, n=0,1,2, \ldots . \tag{10}
\end{equation*}
$$

ERRATA
In the article "On the Fibonacci Numbers Minus One" by G. Geldenhuys, Volume 19, no. 5, the following two errors appear on pages 456 and 457:

1. The recurrence relation (1), which appears as

$$
D_{1}=1+\mu, D_{2}=(1-\mu)^{2} \text {, and } D_{n}=(1+\mu) D_{n-1}-\mu D_{n-3} \text { for } n \geq 3
$$

should read

$$
D_{1}=1+\mu, D_{2}=(1+\mu)^{2}, \text { and } D_{n}=(1+\mu) D_{n-1}-\mu D_{n-3} \text { for } n \geq 3 \text {; }
$$

2. The alternative recurrence relation (4), which appears as

$$
D_{m}-D_{m-1}-D_{m-2}=1 \text { for } m \geq 3
$$

should read

$$
D_{m}-\mu D_{m-1}-\mu D_{m-2}=1 \text { for } m \geq 3 .
$$

We thank Professor Geldenhuys for bringing this to our attention.

