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Introduction 

It may surprise some people to find that the name "golden section," or, 
more precisely, goldener Schnitt, for the division of a line AB at a point C 
such that AB • CB =-AC2, seems to appear in print for the first time in 1835 in 
the book Die reine Elementar-Mathematik by Martin Ohm, the younger brother of 
the physicist Georg Simon Ohm. By 1849, it had reached the title of a book: 
Der allgemeine goldene Schnitt und sein Zusammenhang mit der harminischen 
Theilung by A. Wiegang. The first use in English appears to have been in the 
ninth edition of the Encyclopaedia Britannica (1875), in an article on Aesthe-
tics by James Sully, in which he refers to the "interesting experimental en-
quiry . . . instituted by Fechner into the alleged superiority of Tthe golden 
section' as a visible proportion. Zeising, the author of this theory, asserts 
that the most pleasing division of a line, say in a cross, is the golden sec-
tion . . . ." The first English use in a purely mathematical context appears 
to be in G. Chrystal's Introduction to Algebra (1898). 

The question of when the name first appeared, in any language, was raised 
by G. Sarton [11] in 1951, who specifically asked if any medieval references 
are known. The Oxford English Dictionary extends Sarton1s list of names and 
references and, by implication, answers this question in the negative. (The 
1933 edition of the OED is a reissue of the New English Dictionary, which ap-
peared in parts between 1897 and 1928, together with a Supplement. The main 
dictionary entry "Golden," in a volume which appeared in 1900, makes no ref-
erence to the golden section, though it does cite mathematical references that 
will be noted later; the entry "Section" (1910) contains a reference to "me-
dial section" (Leslie, Elementary Geometry and Plane Trigonometry, fourth edi-
tion, 1820) and to Chrystal's use of "golden section" noted above. The 1933 
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Supplement does not appear to contain any further references. A further Sup-
plement, which started publication in 1972, has a long and detailed entry un-
der "Golden" which is clearly based on and extends, but does not answer, Sar-
ton's question.) Among the other names are: the Italian divina proportione 
(Luca Pacioli, in his book of that name, published in Venice in 1509) or Latin 
proportio divina (in a letter from Johannes Kepler to Joachim Tanck on May 12, 
1608; then in Keplerfs book De Nive Sexangula, 1611); the golden medial; the 
medial section; and the golden mean. This last term "golden mean" is credited 
by the OED to DTArcy W. Thompson. (Further complications! The OED—1972 Sup-
plement entry "Golden"—cites p. 643 of On Growth and Form [12]: "This cele-
brated series, which . . . is closely connected with the Seotio aurea or Gol-
den Mean, is commonly called the Fibonacci series." The reference is to the 
now rare first edition of 1917; the second edition has an expanded and elabo-
rately erudite version of this footnote on pp. 923 and 924, which starts dif-
ferently: "This celebrated series corresponds to the continued fraction 1 + 
1/1+ 1/1+ etc., [though Thompson, who uses a slightly different layout of the 
fraction, omits the first term in both versions of the footnote] and converges 
to 1.618..., the numerical equivalent of the seotio divina, or 'Golden Mean.'" 
This same dictionary entry later assigns the first use of the Latinized seotio 
aurea to J. Helemes, in 1844, in a heading in the Arohiv fur Mathematik und 
Physik, IV, 15: uEine . . . Au fid sung der seotio aurea.11) Unfortunately, the 
same expression "golden mean" is usually applied to the Aristotelian principle 
of moderation: avoid extremes. Other quite different things with similar names 
are the golden rule (the rule of three; see the OED 1933 edition entry "Gol-
den" for references) and the golden number (the astronomical index of Meton's 
lunar cycle of nineteen years). Also E. T. Bell, in "The Golden and Platinum 
Proportions" [2], refers to "the so-called golden proportion 6:9::8:12," but I 
cannot decide whether this article is meant as a serious contribution or not. 
If confusion and misapprehension were confined to nomenclature, that would, it 
is evident, be bad enough; alas, more is to be described, after a paragraph of 
sanity. 

The mathematical theory of the golden section can be found in many places. 
I would cite' Chapter 11 of H. S. M. Coxeter's Introduction to Geometry [4] as 
both the best and most accessible reference, and further developments can be 
found in other of Coxeter's works. The briefest acquaintance with any treat-
ment of the Fibonacci series will indicate why many accounts of that topic 
will tend to the golden section, and The Fibonacci^Q^arterly is a rich source 
of articles and references on this subject. That there appears to be a con-
nection between the Fibonacci numbers (and hence the golden section) and phyl-
lotaxis (i.e., the arrangement of leaves on a stem, scales on a pine cone, 
florets on a sunflower, infloresences on a cauliflower, etc.) is an old and 
tantalizing observation. The subject is introduced in Coxeter [4], a brief 
historical survey is included in a comprehensive paper by Adler [1], and Cox-
eter [5] gives a short and authoritative statement. 

The application of the golden section to other fields has, however, cre-
ated a vast and generally romantic or unreliable literature. For instance, 
the application to aesthetics is, by its nature, subjective and controversial; 
a good brief survey with references is given in Wittkower [ 13] . For a compre-
hensive example of the genre, see the rival explanation and critical view of 
the role of the golden section in literature, art, and architecture in Brunes, 
The Seorets of Ancient Geometry [3]. (Lest I be incorrectly understood to be 
dismissing the scientific and experimental study of aesthetics as worthless, 
let me cite H. L. F. von Helmhlotz's On the Sensations of Tone [10] as an 
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impressively successful example of this type of investigation, the very acme 
of science, mathematics, scholarship, and sensibility. In particular this book 
contains the first explanation of the ancient Greek observation that harmony 
seems to be connected with small integral ratios. But it is precisely Helm-
holtzfs masterly blend of acoustics, physiology, physics, and mathematics that 
establishes firmly a standard which so few other writers on scientific aesthe-
tice approach.) 

With this outline of the recent history of the golden section behind us, 
my objective here is to treat the construction as it is described in Euclidfs 
Elements under the name of "the line divided in extreme and mean ratio" and to 
develop and explore beyond the propositions we find proved there. My covert 
purpose is historical: to pose implicitly the question of whether the general-
izations to be described here might have had any part, now lost, in the devel-
opment of early Greek mathematics. To isolate this discussion of the ancient 
period from the later convoluted ramifications sketched in this introduction, 
I would like to finish with what is, I hope, an accurate description of the 
surviving evidence about the Greek period: the propositions to be found in 
Euclid's Elements constitute the only direct, explicit, and unambiguous sur-
viving references to the construction in early Greek mathematics, philosophy, 
and literature; and the only other surviving Greek references are to be found 
in mathematical contexts, in Ptolemy's Syntaxis^ Pappus ' Colleotio, Hypsicles1 

"Book XIV" of the Elements3 and an anonymous Scholion on Book II of the Ele-
ments. 
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The Definition in Euclid's Elements 

The golden ratio is defined at the beginning of Book VI of the Elements'. 

A straight line is said to have been cut in extreme and mean ratio 
when, as the whole line is to the greater segment, so is the greater 
to the less. 

Book VI applies the abstract proportion theory of Book V to geometrical magni-
tudes, and Proposition 16 describes how to manipulate the proportion in the 
definition above into a geometrical statement: 

If four straight lines be proportional, the rectangle contained by 
the extremes is equal to the rectangle contained by the means; and 
if the rectangle contained by the extremes is equal to the rectangle 
contained by the means, the four straight lines will be proportional. 

Otherwise said, if a, b, c, and d are four lines such that aibiia:d9 then rec-
tangle (a, d) = rectangle (£>, o) and conversely. Hence, if C divides the line 
AB in the golden section, the rectangle with sides AB and BC is equal to the 
square with side AC. 
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This is meant literally. An elaborate 
theory9 now generally called the "applica-
tion of areas," is developed in the Elements, 
and this describes how, for example, to 
manipulate any rectilinear plane area into 
another area equal to the original area and 
similar to a third figure. Our arithmeti-
cal definition of area ("base X height") is 
not needed and is never used; indeed, this 
theory of application of areas, together 
with the Book V theory of proportions, pro-
vides a completely adequate alternative to 
the construction of the real numbers and 
their use in plane rectilinear geometry. It merits considerable respect, and 
gets it: the same (probably equally unreliable) story is found about Pythago-
ras sacrificing an ox to the discovery of a result on the application of areas 
as is also told about the theorem on right angle triangles. 

The golden section is constructed in Proposition 30: 

To cut a given finite straight line in extreme and mean ratio, 

and the method used there involves an elaboration of the theory called "ap-
plication with excess." Fortunately, an easier construction is possible and 
has already been given in Book II; and the manuscripts that we possess of the 
Elements contain a second, possibly interpolated, proof of VI, 30, referring 
back to this earlier construction. Using this method, it is possible to by-
pass the use of proportion theory, and the elaborations of the theory of ap-
plication of areas, and to give a direct definition and construction of the 
golden section. This is now we shall proceed. 

The Construction of the Line Divided in Extreme and Mean Ratio, 

and Its Generalization 

Book II, Proposition 11, describes how: 

To cut a given straight line so that the rectangle contained by 
the whole and one of the segments is equal to the square on the 
remaining segment, 

and we shall hereinafter adopt this as the definition of the extreme and mean 
ratio. The construction is straightforward: 

To construct the required point C on AB 9 draw the 
square ABDE; take F to be the midpoint of AE, and G on 
EA produced such that FG = FB. If ACHG is the square 
with side AG9 then C cuts AB in mean and extreme ratio. 

The verification of this is easy: 

FG 2 = (AF + AG) 2 

= AF2 + AC1 + 1AF • AC (Since AG = AC.) 
But FG1 FBZ AF2 + AB2. (By Pythagorasf theorem.) 
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Therefore, AC1 + 2AF • AG ?= AB1. 
Subtract IKE • AG = AE • AC from both sides, 
then AC1 = vl£ • CB = CS • B£>. 

Q.E.F. 

This proof can be read as if AF • AC 9 for example, represented the product 
of two numbers, the lengths of AE and AC; or the purist can interpret AE • AC 
as a rectangle with sides equal to the lines AE and AC and, using some obvi-
ous manipulations, check that the proof makes sense and is correct. This lat-
ter method is in the spirit of the techniques of application of areas, though 
none of the subtle manipulations of that theory are needed. 

It is clear that it must be the rectangle contained by the whole and the 
lesser* segment that will be equal to the square on the greater segment, since 
the square on the lesser segment will fit inside the rectangle contained by 
the whole and the greater segment and so it has smaller area. (The common no-
tions at the beginning of Book I set out what are, in effect, the axioms of a 
theory of equality and inequality of area or, more strictly, of content; and 
Common Notion 5 states: The whole is greater than the part.) 

We now describe the generalization that we call the nth order extreme and 
mean patio, abbreviated to the noem ratio. There is one such construction for 
each integer n, and the golden section corresponds to the case n - 1; the im-
plications of the construction are somewhat simpler for the case of even val̂ -
ues of n, and therefore we shall always illustrate the case of n = 3; and we 
shall shortly introduce and use a consistent and general notation and termin-
ology to describe the resulting configuration. 

Start with the square ABDE on the given line 
AB, and on AE produced as necessary, take points 
F9 G9 H9-as shown, with kAB = AE = EE = EG = GH9 

etc.; then these points will be used in the con-
struction of the 1st, 2nd, 3rd, 4th, etc. , extreme 
and mean ratios. We always illustrate the case 
of n- 3 and so, here, work from the point G. On 
EA produced, take J such that GJ = GB; then the 
square AJKCi defines the point C1 dividing AB in 
the 3rd extreme and mean ratio. -1st 

2nd E 

3rd G 

4th H 
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The Definition and Properties of the Noem Ratio 

We start with the basic defining property of the generalization, and show 
that it is possessed by our constructed point. 

Definition: The point C1 is said to divide AB in the noem ratio (read: nth-
order extreme and mean ratio) if, taking points C19 ..., Cn-i> Cn on AB such 
that 

j l _j I l_ 
A C1 C„.x Cn B 

ACX = 0^2 = ,• • • = Cn_1Cn , then Cn lies between A and B and AB • CnB = AC\. 

Note that the latter condition implies that CnB is less than AC1; it will 
be called the ''lesser segment" of the noem ratio. The greater segment of the 
golden ratio generalizes two ways: to ACl9 which we call the initial segment 
of the noem ratio; and to ACn, which we again call the greater segment of the 
noem ratio. Care must be exercised in generalizing the results on the golden 
section to make the appropriate choice. As remarked earlier, we shall always 
illustrate the case of n = 3, and will always use the same letters to label 
the points, calling the three division points C19 Cn-l9Cn9 so that their roles 
will be clear. Proofs will be given for the general case, sometimes referring 
to a phantom point C2 and adding a few dots "+ ••• + ." 

Proposition: The point C19 described in the construction, divides AB in the 
noem ratio* 

Proof: The figure illustrates the construction 
for the case n = 3 . The proof is a straightforward 
generalization of the proof given in the case n= 1, 
and we can even use the same letters to identify the 
vertices of the* figure. 

As before, 

FG2 = (AF + AG)2 

• = AF2 + AC\ + 2AF • ACX. 
But FG2 = FB2 = AF2 + AB2. 
Therefore, AC\ + 1AF • Ad = AB2. 
But 2AF • AC1 = nAE • ACX = AE • ACn . 

(since AF = jAE9 and nAC1 = ACn\ 

Hence ACn < AB and, subtracting AE • ACn from 
both sides, we see that AC\ = AB • CnB. Q.E.F. 

Book XIII of Euclid's Elements contains the details of the construction of 
the five regular "Platonic" solids, and a proof that these are the only regu-
lar solids; but it contains a lot more material besides that. In particular, 
it starts with six propositions on the extreme and mean ratio, together with 
alternative proofs of these results illustrating a method of "analysis and 
synthesis." These propositions follow on in the style of Book II—-in particu-
lar, they do not explicitly need to use any more than the rudiments of the 
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theory of application of areas—and they can easily be generalized to apply 
to the noem ratios. We now alternate the enunciations of these Euclidean 
propositions with their generalizations, interposing some general remarks. 
(Later propositions of Book XIII describe relationships between the extreme 
and mean ratio and pentagons, hexagons, decagons, icosahedra, and dodecahedra; 
we shall not consider them here.) 

XIII, Proposition 1. If a straight line be cut in extreme and 
mean ratio, the square on the greater segment added to half of 
the whole is five times the square on the half. 

Paraphrase of Euclid's Proof: 

If AB is cut in extreme and mean ratio at C, 
and DA = h&B, then we prove CD2 = 5AD2. 

Draw the squares on DC and AB, and complete 
the figure as shown. (In addition to the Eucli-
dean labelling of the vertices, we have also la-
belled the regions of the figure.) 

We know that AB • CB = AC1 (Definition of mean 
and extreme ratio) 

i.e., 

and 

i.e., 

hence 

Adding AD2 

squares, 

AB 'AC = 2AD- AC (Since 
AB 

IS, 

D*-

"71 
V 

2AD) 
R — ZO i — *-> i "I" J 2 J 

P + R = Q + S± + S2. 

JP, and assembling the result into 

DC2 = AB2 + AD2. 

But AB2 = kAD2 , so DC2 5 AD2. Q.E.D. 

Remark: Our way, today, of considering the golden ratio is almost always to 
identify it with the real number ^(/5+ 1); this and the following propositions 
represent the closest approach we find in surviving Greek texts to this eval-
uation. For instance, this proposition implies that if AB = 2, then CD = /5 
(i.e., the side of a square of area equal to the rectangle with sides AB and 
5AB) so AC = /5 - 1, and the ratio is 2: (A - 1) [= ̂ (/5 + 1):!]. 

Proposition 1': If a straight line be cut in the noem ratio, the square on the 
initial segment added to n times half of the whole is n2 + 4 times the square 
on the half. 

Remark: It is standard Euclidean practice to handle such a general proof by 
choosing a particular small value of n, typically n = 2, 3, or 4. The figures 
for our proofs differ very slightly according as n is even or odd (a conse-
quence of the occurrence of halves in the construction), with the case of even 
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n being slightly simpler. It is also standard Euclidean practice when there 
are several different cases to a proposition only to consider the most compli-
cated one. Therefore, our choice of n = 3 is in line with the Euclidean pro-
cedure. We shall9 however, use a general labelling system, writing C19 Cn_l9 
Cn9 rather than C±, Cz> C3, and develop further the practice of labelling re-
gions of the figure, using letters P, Q, R, etc., and suffixing to denote equal 
regions, so P1 = P2 = P3 etc. Euclidean practice appears to be to label only 
the vertices of the figure, working through the alphabet strictly in order of 
occurrence in the setting-out and construction of the figure. 

A final point in which our enunciation differs from Euclidean practice is 
in referring to the chosen parameter n. A more idiomatic expression, as ren-
dered in English, might read: 

Proposition 1": If a straight line be cut in the general extreme and mean ra-
tio to some number, the square on the initial segment added to that number of 
segments each equal to half of the whole is the square of that number increased 
by four times the square on the half. 

Purists might like to try a similar rephrasing of later generalizations! 

Proof: If AB is cut in the noem ratio at C19 and DnA = -~AB9 then we prove 
that DnCl = (n2 + 4)4P2. 

Draw the squares on ~DnC\ and AB9 and complete the figure as shown: 

S* 

^1 Cn-1 Cn 

•Vn D n _ x D ± A 

We know t h a t AB • CnB = AC\ ( D e f i n i t i o n of t h e noem r a t i o ) 
i . e . , P = Q9 

and AB • AC1 = 2AD1 • AC± (S ince AB = Z4PX) 
i . e . , R = 2S19 
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and hence, P + nR = Q + 2nS1. 

Adding AD2 = n2T and assembling the result into squares, we get 

DnC\ = AB2 + n2T 
= (n2 + 4)T (Since AB2 = 4T) 
= (n2 + k)AD\. 

Q.E.D. 

The next propositions give the converses to these results. We start with 
Euclid's enunciation: 

XIII, Proposition 2. If the square on a straight line be five 
times the square on a segment of it, then, when the double of 
the said segment is cut in extreme and mean ratio, the greater 
segment is the remaining part of the original straight line. 

The Euclidean practice of never referring to a particular figure can make 
the enunciations of propositions very cumbersome, and these propositions, to-
gether with the propositions of Book II contain some particularly awkward ex-
amples. In these cases, it is best to ignore the enunciation and proceed 
directly into Euclid's proof of the proposition, where the setting-out will 
give a more accessible explanation of the result. In this case we find, par-
aphrasing and adjusting the labelling to accord with our convention, that if 
C and B are taken on a line DA produced with DC2 = 5DA2 and AB = WA9 then C 
cuts AB in the extreme and mean ratio with AC the greater segment. 

-L, L , J i 
D A C B 

Proposition 2': If a line DnA is divided equally into 

and C\ and B are taken on DnA produced with 

DnCl = (n2 + 4)Z?nD*_1 and AB = ~pnA.= 2DnDn_19 

then C-L cuts AB in the noem ratio with AC1 the initial segment. 

J L _ I I I I I _ L 
Dn Z?n-1- D1 A Cx Cn.x Cn B 

Proof: For both propositions we can construct the same figures as for the 
preceding propositions and then read the previous arguments backwards. Q.E.D. 

XIII, Proposition 3. If a straight line be cut in extreme and 
mean ratio, the square on the lesser segment added to half of 
the greater segment is five times the square on half of the 
greater segment. 
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Proposition 3': If Cx cuts AB in the noem ratio, and ADn = ^AC1 (as shown), 
then DnB2 = (n2 + b)AD\i i.e., the square on (the lesser segment CnB added to 
half of the greater segment ACn) is equal to (n2 + 4) times the square on (half 
of the initial segment AC±). 

Proof: Construct the figure shown, 
where A9 B9 Cl9 Cn.l9 Cn are as usual, 
and AD1 = D ^ ^ 

First observe that 

DnCn = ACn -ADn 

- nACi - nADj, 

= nAD1 (S ince AC-L 

= ADn. 

Hence, DnB2 = Q + R1: + S 

= Q + i?2 •••+ 5 

24Z?!) 

p 
— — h - 1 

* 1 

s 

^_ {— , 

s 

R2\ 

D, C\ n-l 

+ ACX (Since C1 divides AB in the noem ratio.) 

Cn 

= (n2, + 4)4£>2. (Since g = £nC2 = n2AD{ and 4CX = 24Z?X.) Q.E.D. 

XIII, Proposition 4. If a straight line be cut in extreme and 
mean ratio, the square on the whole and the square on the les-
ser segment together are triple of the square on the greater 
segment. 

Proposition 41: Let AB be cut in the noem ratio at C± , then 

AB2 + CnB2 = (n2 + 2)AC\9 

i.e., the square on the whole and the 
square on the lesser segment together 
are (n2 + 2) times the square on the 
initial segment. 

Proof: We have that CnB • AB = AC\, 
i.e., Q1 + R~P. 
Hence, + R + + i?= 2P. 

Adding AC2 = n2P to each side, and 
assembling into squares, we see that 
AB2 + CnB2 = (n2 + 2)ACl> Q.E.D. 

# 2 

P 

1 1 _J 

R 

Qi\ 
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XIII, Proposition 5. If a straight line be cut in extreme and 
mean ratio, and there be added to it a straight line equal to 
the greater segment, the whole straight line has been cut in 
mean and extreme ratio, and the original straight line is the 
greater segment. 

Proposition 5': If C± cuts AB in the noem ratio, and 
duced with AnB = nAB, and D on BAn produced with DAn = 
the noem ratio by A. 

An is taken on BA pro-
ACi , then DB is cut in 

Note: In the Euclidean proposition, n = 1 and An = A; therefore, there is no 
need to mention the first step of constructing the point An* After this step 
the generalization states that, if there be added to AnB a line equal to the 
initial segment, the whole BD has then been cut in the noem ratio, with the 
line BAn being the greater segment, and so the original line BA the initial 
segment. 

Proof: Complete the figure as shown; 
we want to show that DAn • DB = AB^ Now, 

and 
DAn • DA = P + Q1 + 

Jn-i + «i + R 

and, since C1 cuts AB in the noem ratio, 

AB • CnB 
i.e. , P = R. 

ACf, 

Hence DAn • DB = AB2 

D 
A, A 

-A, 
Ci 

c 

~TR 

Cn 

XIII, Proposition 6. If a rational straight line be cut in ex-
treme and mean ratio, each of the segments is the irrational 
straight line calleid apotome. 

This result, together with its proof, generalizes directly to the noem 
ratio, but an explanation of what it means depends on a knowledge of the long 
and difficult Book X. It is perhaps worth noting that Euclid uses the words 
"rational" and "irrational" here in completely different sense from our modern 
usage: a short, though oversimplified explanation is that when a unit line p 

has been chosen, then anything of the form /jK-• p (where p and q are integers) 
is called rational; anything not of that form is an irrational; and an apotome 
is an irrational line that can be expressed as a difference of two rational 

lines, p - / l 
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Ratio in Eudlid's Elements 

It is a curious and remarkable fact that ratio is not defined either in 
Eudlid's Elements, or anywhere else in the surviving corpus of Greek mathema-
tics. All that we have is a vague description of the word at Book V, Defini-
tion 3: 

A ratio is a sort of relation in respect of size 
between two magnitudes of the same kind. 

What is defined (at Book V, Definition 5) is proportion, which is a relation 
that may or may not hold among four magnitudes, aibiioid; and we can think of 
it, and appear to be encouraged in this by Euclid, in terms of the equality of 
two "ratios." An examination of the scanty surviving evidence of pre-Eudlidean 
mathematics, and a reinterpretation of some of the books of the Elements has 
led me to suggest that ratio might have been defined, in the period before the 
development of the abstract proportion theory that we find in Book V of the 
Elements, by a process based on the "Euclidean" subtraction algorithm. (Actu-
ally, what little evidence we have indicates that the person who realized the 
importance of the procedure might have been Theaetetus, a colleague and friend 
of Plato, so the "Theaetetan subtraction algorism" might be a more appropriate 
name; here, I have also corrected what the OED calls a "pseudo-etymological 
perversion. . . in which algorithm is learnedly confused with Greek apiOyos.") 
Let me illustrate this by describing the operation of the procedure on two 
lines a0 and a1. Suppose that a1 goes into aQ some number n0 of times, leav-
ing a remainder a2 less than a1; and then a2 goes into a± some number nx of 
times, leaving a remainder a3; etc. Then the ratio aQia will be defined by 
the sequence of integers [n0, n19 n2, . . . ] . 

If, at any stage, a remainder is zero, the process terminates, and this is 
characteristic of commensurable ratios. Among incommensurable ratios, with 
nonterminating expansions, the simplest will be the ratio in which, at each 
step, the smaller magnitude goes once into the larger magnitude, leaving a re-
mainder for the next step, thus giving the ratio [1, 1, 1, . . . ] . This is the 
golden ratio, as can immediately be deduced from the figure of the regular pen-
tagon of which the diagonals, which form an inscribed pentagon, cut each other 
in the golden ratio (this is explicitly proved at XIII, 8, but the result is 
implicit in the construction of the pentagon given at IV, 11); or it can eas-
ily be deduced from the defining property of the ratio. What we have been 
constructing here are the next simplest incommensurable ratios, of the form 
[n, n, n, . . . ] , in which, at each stage, the smaller magnitude goes n times 
with a remainder into the larger magnitude. By using a bit of algebra we can 
easily work out the numerical value 9 of this ratio, since 

e = n + FTT = n + e' 
n + . . . 

so 92 - n6 - 1 = 0, and, taking the pos i t ive root , 
6 = kW(n2 + 4) + n). 

[Alternatively, we can read off from the construction that 

6 = AB/AC1 = 2/(/(n2 4- 4) - n) = hW(n2 + 4 ) + n).] 
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This explains the occurrence of the number 5, generalizing to n2 + 4, the 
halves, and the addition and subtraction of segments in the propositions that 
we have been proving. 

It is possible to extend the construction, and thus describe a procedure 
for constructing any ratio that eventually becomes periodic, though the longer 
the period, the more involved becomes a perliminary calculation of two param-
eters needed in the construction. (One of these parameters describes the lo-
cation of the initial point on the left-hand edge of the square on AB, in our 
diagram; the other describes the position of an auxiliary point Br on AB; the 
construction then continues from these two points as before.) Further details 
of these constructions, together with details of the historical and mathemati-
cal ideas that fill out, explain, and set in context these remarks, are given 
in the papers [7], [8], and [9]. 

I do not know whether any of the noem ratios, with n >_ 3, occur in any 
regular or semiregular figure, generalizing the appearance of the golden sec-
tion in the pentagon and other figures, and the ratio [1, 2, 2, 2, ...] of the 
diagonal and side of a square. 
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