A PROPERTY OF THE FIBONACCI SEQUENCE $\left(F_{m}\right), m=0,1, \ldots$

L. KUIPERS

Rue d'Orzival 4, 3960 SIERRE, Switzerland
(Submitted November 1980)

It is well known that the sequence of the (natural) logarithms reduced mod 1 of the terms F_{m} of the Fibonacci sequence are dense in the unit interval. See [1], [2]. This is also the case when the logarithms are taken with respect to a base b, where b is a positive integer ≥ 2. In order to see this, we start from the fact that

$$
\log F_{n+1}-\log F_{n} \rightarrow \log \frac{1+\sqrt{5}}{2} \text { as } n \rightarrow \infty .
$$

Now $\log \frac{1+\sqrt{5}}{2} / \log b$ is an irrational number, for if we suppose that

$$
\log \frac{1+\sqrt{5}}{2} / \log b=r / s,
$$

where r and s are natural numbers, then we would have

$$
b^{r}=((1+\sqrt{5}) / 2)^{s},
$$

obviously a contradiction. Hence, $\log _{b} F_{n+1}-\log _{b} F_{n}$ tends to an irrational number as $n \rightarrow \infty$. This implies that the fractional parts of the sequence

$$
\left(\log _{b} F_{m}\right), m=1,2, \ldots
$$

is dense in the unit interval.
We assume that the Fibonacci numbers $F_{m}, m \geq 1$, are written in base b, that is,

$$
F_{m}=a_{0} b^{n}+a_{1} b^{n-1}+\cdots+a_{n},
$$

where $a_{0} \geq 1,0 \leq a_{j} \leq b-1, j=0,1, \ldots, n, m=1,2, \ldots$, or to any m a set of digits $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is associated.

Now, given an arbitrary sequence of digits $\left\{a_{0}, a_{1}, \ldots, a_{r}\right\}$, one may ask whether there exists an F_{m} which possesses this set as initial digits. The question can be answered in the affirmative.

We associate to the sequence $\left\{a_{0}, a_{1}, \ldots, a_{r}\right\}$ the value

$$
a_{0}+\frac{a_{1}}{b}+\cdots+\frac{a_{r}}{b^{n}}
$$

which is a point on the interval $[1, b)$. This value is the left endpoint of the interval

$$
T=T(r)=\left[a_{0}+\frac{a_{1}}{b}+\cdots+\frac{a_{r}}{b^{r}}, a_{0}+\frac{a_{1}}{b}+\cdots+\frac{a_{r}}{b^{r}}+\frac{a_{r}+1}{b^{r}}\right) .
$$

The function $\log _{b} x$, mapping $[1, b$) onto $[0,1)$, maps this interval $T(x)$ onto the interval

$$
T^{*}=T^{*}(r)=\left[\log _{b}\left(a_{0}+\frac{a_{1}}{b}+\cdots+\frac{a_{r}}{b^{r}}\right), \log _{b}\left(a_{0}+\frac{a_{1}}{b}+\cdots+\frac{a_{r}}{b^{r}}+\frac{1}{b^{r}}\right)\right),
$$

a subinterval of $[0,1)$.

Since the fractional parts of the logarithms to base b of the numbers F_{m} are dense in the unit interval, there is an m such that $\log _{b} F_{m}$ (mod 1) εT^{*}. It follows that there exists a positive integer $n \geq r$ such that

$$
\log _{b} F_{m}(\bmod 1)=\log _{b}\left(a_{0}+\frac{a_{1}}{b}+\frac{a_{2}}{b^{2}}+\ldots+\frac{a_{r}}{b^{r}}+\ldots+\frac{a_{n}}{b^{n}}\right)
$$

Hence, there exists an integer $k \geq n$ such that
or

$$
\begin{aligned}
\log _{b} F_{m} & =k+\log _{b}\left(a_{0}+\frac{a_{1}}{b_{1}}+\cdots+\frac{a_{r}}{b^{r}}+\cdots+\frac{a_{n}}{b^{n}}\right), \\
F_{m} & =b^{k}\left(a_{0}+\frac{a_{1}}{b}+\cdots+\frac{a_{r}}{b^{r}}+\cdots+\frac{a_{n}}{b^{n}}\right) \\
& =a_{0} b^{k}+a_{1} b^{k-1}+\cdots+a_{r} b^{k-r}+\cdots+a_{n}^{k-n}
\end{aligned}
$$

References

1. R. L. Duncan. "An Application of Uniform Distributions to the Fibonacci Numbers." The Fibonacci Quarterly 5, no. 2 (1967):137-140.
2. L. Kuipers. "Remark on a paper by R.L. Duncan Concerning the Uniform Distribution Mod 1 of the Sequence of the Logarithms of the Fibonacci Numbers." The Fibonacci Quarterly 7, no. 5 (1969):465, 466, 473.
