ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
University of New Mexico, Albuquerque, NM 87131

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each problem or solution should be on a separate sheet (or sheets). Preference will be given to those that are typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS
The Fibonacci numbers F_{n} and Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

Also, α and β designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$ 。

PROBLEMS PROPOSED IN THIS ISSUE

B-478 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
(a) Show that the congruence

$$
x^{2} \equiv-1\left(\bmod 4 m^{2}+4 m+5\right)
$$

has $x= \pm\left(2 m^{2}+m+2\right)$ as a solution for m in $N=\{0,1, \ldots\}$.
(b) Show that the congruence

$$
x^{2} \equiv-1\left(\bmod 100 m^{2}+156 m+61\right)
$$

has a solution $x=a m^{2}+b m+c$ with fixed integers a, b, c for m in N.
B-479 Proposed by Herta T. Freitag, Roanoke, VA
Prove or disprove that $L_{a+n d}+L_{a+n d-d}-L_{a+d}-L_{a}$ is an integral multiple of L_{d} for positive integers α, d, n with d odd.

B-480 Proposed by Herta T. Freitag, Roanoke, VA
Prove or disprove that $L_{a+n d}-L_{a+n d-d}-L_{a+d}+L_{a}$ is an integral multiple of $L_{d}-2$ for positive integers α, d, n with d even.

B-481 Proposed by Jerry Metzger, University of N. Dakota, Grand Forks, ND
A and B compare pennies with A winning when there is a match. During an unusual sequence of m comparisons, A produced m heads followed by m tails followed by m heads, etc., while B produced n heads followed by n tails followed by n heads, etc. By how much did A's wins exceed his losses? [For example, with $m=3$ and $n=5$, one has

$$
\begin{array}{ll}
\text { A: } & \text { HННТТТНННТТТННН } \\
\text { B: } & \text { HННННТТТТТНННН }
\end{array}
$$

and A's 8 wins exceeds his 7 losses by 1.]
B-482 Proposed by John Hughes and Jeff Shallit, U.C., Berkeley, CA
Find an infinite sequence $\alpha_{1}, \alpha_{2}, \ldots$, of positive integers such that

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n} \text { and } \lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{k=1}^{n}\left(a_{k+1} / a_{k}\right)\right]
$$

both exist and are unequal.
B-483 Proposed by John Hughes and Jeff Shallit, U.C., Berkeley, CA
Find an infinite sequence $\alpha_{1}, \alpha_{2}, \ldots$, of positive integers such that $\lim _{n \rightarrow \infty}\left(\alpha_{n}\right)^{1 / n}$ exists and $\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{k=1}^{n}\left(\alpha_{k+1} / \alpha_{k}\right)\right]$ does not exist.

SOLUTIONS
Generating F_{n}^{2} and L_{n}^{2}
B-452 Proposed by P. L. Mana, Albuquerque, NM
Let $c_{0}+c_{1} x+c_{2} x^{2}+\cdots$ be the Maclaurin expansion for
$[(1-a x)(1-b x)]^{-1}$,
where $a \neq b$. Find the rational function whose Maclaurin expansion is

$$
c_{0}^{2}+c_{1}^{2} x+c_{2}^{2} x^{2}+\cdots
$$

and use this to obtain the generating functions for F_{n}^{2} and L_{n}^{2}.
Solution by A. G. Shannon, New South Wales Inst. of Tech., Sydney, Australia

$$
\begin{aligned}
& \text { Let } U(x)=\sum_{n=0}^{\infty} x^{n} \text {, formally. Then } \sum_{n=0}^{\infty} c_{n} x^{n}=[(1-a x)(1-b x)]^{-1} \text { yields } \\
& c_{n}=\left(a^{n+1}-b^{n+1}\right) /(a-b) \text { so that }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty} c_{n}^{2} x^{n} & =\left(a^{2} U\left(\alpha^{2} x\right)+b^{2} U\left(b^{2} x\right)-2 \alpha b U(a b x)\right) /(a-b)^{2} \\
& =(1+\alpha b x) /\left(1-a^{2} x\right)\left(1-b^{2} x\right)(1-a b x)
\end{aligned}
$$

Thus, when $a=1-b=\frac{1}{2}(1+\sqrt{5})$, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} F_{n}^{2} x^{n}=\sum_{n=1}^{\infty} F_{n}^{2} x^{n}=x \sum_{n=1}^{\infty} c_{n-1}^{2} x^{n-1}=x(1-x) /\left(1-a^{2} x\right)\left(1-b^{2} x\right)(1+x) \\
&=\left(x-x^{2}\right) /\left(1-2 x-2 x^{2}+x^{3}\right) . \\
& \text { A1so } \\
& \sum_{n=0}^{\infty} L_{n}^{2} x^{n}=U\left(a^{2} x\right)+U\left(b^{2} x\right)+2 U(\alpha b x)=\left(4+7 x-x^{2}\right) /\left(1-\alpha^{2} x\right)\left(1-b^{2} x\right)(1+x) \\
&=\left(4-7 x-x^{2}\right) /\left(1-2 x-2 x^{2}+x^{3}\right) .
\end{aligned}
$$

These results are particular cases of Eqs. (33) and (42) of A. F. Horadam's article, "Generating Functions for Powers of a Certain Generalised Sequence of Numbers," Duke Math. J. 32 (1965):437-46.
Also solved by Paul S. Bruckman, John Ivie, E. Primrose, Heinz-Jürgen Seiffert, Sahib Singh, John Spraggan, Gregory Wulczyn, and the proposer.

FiFibonacci and LuLucas Equations

B-453
Proposed by Paul S. Bruckman, Concord, CA
Solve in integers r, s, t with $0 \leq r<s<t$ the FiFibonacci Diophantine equation

$$
F_{F_{r}}+F_{F_{s}}=F_{F_{t}}
$$

and the analogous LuLucas equation in which each F if replaced by an L.
Solution by Sahib Singh, Clarion State College, Clarion, PA
It is easy to see that the FiFibonacci Diophantine equation has solutions:

$$
\begin{array}{ll}
r=0 ; s=1,2 ; & t=3 \\
r=1 ; s=2,3 ; & t=4 \\
r=2, s=3 ; & t=4
\end{array}
$$

and the LuLucas equation admits the following solutions:

$$
\begin{aligned}
& r=0 ; s=1 ; t=2 \\
& r=0 ; s=2 ; t=3
\end{aligned}
$$

We show that there is no other solution possible.
After considering the above values, we see that onward the values of F_{r} and F_{s} are neither equal nor consecutive. Hence $F_{s}-1$ is greater than F_{r}. Thus $F_{F_{s}}<F_{F_{r}}+F_{F_{s}}<F_{\left(F_{s}-1\right)}+F_{F_{s}}=F_{\left(F_{s}+1\right)}$. Therefore, $F_{F_{r}}+F_{F_{s}}$ lies between two consecutive Fibonacci numbers $F_{F_{s}}$ and $F_{\left(F_{s}+1\right)}$ and cannot qualify as a Fibonacci number. Thus no other solution is possible. Similar arguments enable us to conclude that no other solution is possible for the LuLucas Diophantine equation.

Also solved by Herta T. Freitag, John Ivie, Lawrence Somer, and the proposer.

Magic Corners

B-454 Proposed by Charles W. Trigg, San Diego, CA
In the square array of the nine nonzero digits $\begin{array}{llll} & 6 & 7 & 5 \\ 2 & 1 & 3\end{array}$
the sum of the four digits in each 2-by-2 corner array is 16. Rearrange the nine digits so that the sum of the digits in each such corner array is seven times the central digit.

Solution by J. Suck, Essen, E. Germany

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{lll}
1 & 9 & 2 \\
8 & 3 & 7 \\
4 & 6 & 5
\end{array}\right) \text { is up to rotating and flipping }
$$

$e=1$ is impossible, since $9>7$ must be in some corner, $e=2$ is impossible from the fact that, in the corner of the 9, the sum of the other two digits would have to be $3, e \geq 4$ is impossible, since the sum of the remaining three digits in a corner is at most $7+8+9=24$ with no other corner reaching this.

Now, let $e=3$. Then the sum of all corner sums is $4 \cdot 21=1+2+\ldots$ $+9+b+d+f+h+3 \cdot 3$, i.e., $b+d+f+h=30$, showing that
$\{b, d, f, h\}=\{6,7,8,9\}$.
Let, say, $b=9$, then $h=8$ is impossible (since, say, $f=7$ so that $i=3$, and $d=6$ so that $a=3$, too). Also, $h=7$ is impossible (since, say, $f=6$ making $g=3$, and $d=8$ making $g=3$, too). Thus, $h=6$, which entails the given solution.

Also solved by Paul S. Bruckman, Karen S. Carter, Derek Chang, Frank Higgins, Walther Janous, Birgit Kober, John Milsom, Bob Prielipp, Sahib Singh, Lawrence Somer, W. R. Utz, Gregory Wulczyn, and the proposer.

Simplified Convolution

B-455 Proposed by Herta T. Freitag, Roanoke, VA

$$
\text { Let } S_{m}=\sum_{i=0}^{m} F_{i+1} L_{m-i} \text { and } T_{m}=10 S_{m} /(m+2) . \quad \text { Prove that } T_{m} \text { is a sum of }
$$

two Lucas numbers for $m=0,1,2, \ldots$.
Solution by Sahib Singh, Clarion State College, Clarion, PA

$$
S_{m}=\sum_{i=0}^{m} F_{i+1} L_{m-i}=\frac{1}{5} \sum_{i=0}^{m}\left(L_{i}+I_{i+2}\right) L_{m-i}
$$

Using $L_{i}=a^{i}+b^{i}$, the above summation becomes

$$
\begin{aligned}
S_{m} & =\frac{1}{5} \sum_{i=0}^{m}\left[\left(L_{m}+L_{m+2}\right)+(-1)^{i}\left\{L_{m-2 i-2}+L_{m-2 i}\right\}\right] \\
& =\frac{1}{5}\left[(m+1)\left(L_{m}+L_{m+2}\right)+\left(L_{m}+L_{m+2}\right)\right] \\
& =\frac{(m+2)}{5}\left(L_{m}+L_{m+2}\right) .
\end{aligned}
$$

Thus,

$$
T_{m}=2\left(L_{m+2}+L_{m}\right)=L_{m+4}+L_{m-2} .
$$

Also solved by Paul S. Bruckman, Frank Higgins, B. S. Popov, Bob Prielipp, Gregory Wulczyn, and the proposer.

Fibonacci Products of Two Primes

B-456 Proposed by Albert A. Mullin, Huntsville, AL
It is well known that any two consecutive Fibonacci numbers are coprime (i.e., their g.c.d. is 1). Prove or disprove: two distinct Fibonacci numbers are coprime if each of them is the product of two distinct primes.

Solution by Lawrence Somer, Washington, D.C.
A counterexample is provided by the Fibonacci numbers

$$
F_{22}=17711=89 \cdot 199
$$

and

$$
F_{121}=8670007398507948658051921=89 \cdot 97415813466381445596089 .
$$

These numbers were found with the help of Table 1 in [1]. However, the following result is true.
Theorem: Two distinct Fibonacci numbers, each the product of two distinct primes, can have a common factor greater than 1 only if one of the numbers is of the form $F_{2 p}$ and the other number is of the form $F_{p^{2}}$, where p is an odd prime such that F_{p} is prime.

Proof: If p is a prime, call p a primitive factor of F_{n} if $p \mid F_{n}$ but $p \nmid F_{m}$ for $0<m<n$. R. D. Carmichael [2] proved that F_{n} has a primitive prime factor for every n except $n=1,2,6$, or 12 . In none of these cases is F_{n} a product of exactly two distinct primes. It is also known that if $m \mid n$, then $F_{m} \mid F_{n}$. Thus, if n has two or more distinct proper factors r and s which are not equal to $1,2,6$, or 12 , then F_{n} has at least three prime factors-the primitive prime factors of F_{r}, F_{s}, and $F_{r s}$ respectively. Since $F_{6}=8=2^{3}$, it follows that if n is a multiple of 6 , then F_{n} is not a product of two distinct primes. It thus follows that if F_{n} is a product of two distinct primes, then F_{n} is of the form $F_{p}, F_{2 p}$, or $F_{p^{2}}$, where p is prime. Moreover, inspection shows that $n \neq 2$ or 4. However, if F_{p} is a product of two distinct primes, then $\left(F_{n}, F_{p}\right)>1$ implies that n is a multiple of p. But then $n=p$ or F_{n} has at least three distinct prime factors. Further, if p and q are distinct primes, then

$$
\left(F_{2 p}, F_{2 q}\right)=\left(F_{2 p}, F_{q^{2}}\right)=\left(F_{p^{2}}, F_{2 q}\right)=\left(F_{p^{2}}, F_{q^{2}}\right)=1 .
$$

The theorem now follows.

References

1. Brother Alfred Brousseau. Fibonacci and Related Number Theoretic Tables. Santa Clara, Calif: The Fibonacci Association, 1972.
2. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^{n}+\beta^{n} . "$ Annals of Mathematics, 2nd Ser. 15 (1913):30-70.
Also solved by Paul S. Bruckman, Herta T. Freitag, and the proposer.
