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1. Introduction 

In t h i s inves t iga t ion , the leading ro le i s played by the following iden-
t i t y : 

(1) fl (1 - xn)(l - oxn)H - a'1xn'1)(l - a2x2n-1)(l - a'2x2n^) 

- i > n ( 3 n + i ) / 2 ( a 3 w - a- 3 *- 1 ) , 
— 00 

which is valid for each pair of complex numbers a, x such that a ^ 0 and \x\ 
< 1. As presently expressed, identity (1) was first presented by Basil Gor-
don [2, p. 286], However, as observed by M. V. Subbarao and M. Vidyasagar 
[5, p. 23], Gordon was anticipated some 32 years earlier by G. N. Watson [6, 
pp. 44-45], who stated and proved a fivefold-product identity easily shown 
to be equivalent to (1). We are here concerned about several applications of 
(1). Our first result is: 

Theorem 1 

For each pair of complex numbers a, x such that a 4- 0 and \x\ < 1, 

(2) ft (1 - xn)2 (1 - axn) (1 - a^x") (1 - ax"'1) (1 - a^x"1'1) (1 - a 2 ^ 2 n _ 1 ) 2 

. (l-a-2*2"-1)2 

- P(x)J2x3m2a6m + e ( * ) f > w ( 3 m + 1 > (a6m+1 + a'"""1) 
- o o 0 

+ R(x) J2*m(3m+2) (a6 m + 2 + a~6m-2) + S(x) J2x3m(m + 1) (a6m+3 + a^m~3) 
0 0 

+ T W E ^ ( w ) ( a 6 m H + a-6™-1*) + U(x)f^xm(3m+5Ha6m+5 + a"6772"5), 
0 0 

where 

P(x) = 2itxk(3k+1) , Q(x) = - f > 3 f c 2 , R(x) = -x-j£x3kik+l) , 

256 
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S(x) = 2 s £ > k < 3 k + 2 \ T(x) = -x2±x3ka+1\ U(x) = - * 2 i > 3 " 2 . 
~ ° °  — OO _ OO 

The details of the proof are given in Section 2. As a corollary of The-
orem 1, we then represent the decuple infinite product 

n a - xn)6a - x2*1-1)* 
by a double series in the single variable x. In Section 3 we shall need the 
following identity: 

(3) flu - x")3(l - X 2 " " 1 ) 2 = £ <6w + l)xn(3n+1),z, 
n-1 _ o o 

shown by Gordon to be a fairly straightforward consequence of (1). On the 
strength of (3) and two other well-known identities, we then derive a recur-
sive formula for the number-theoretic function r2 (n), which for a given non-
negative integer n counts the number of representations of n as a sum of two 
squares. 

2. Proof of Theorem 1 

For given a, x let G(a, x) be defined by: 

G(a, x) = fi (1 - axn)(l - a"V)(l - ax"1-1) (I - a'V- 1) 

•(1 - a V - ^ d - a'2*2"-1)2. 

Then, for each pair of positive real numbers A9 X, with X < 1, c7(a9 x) con-
verges absolutely and uniformly on the set of all pairs a, x such that 

A~1 1 \a\ ! A and \x\ ^ x-

Hence, for a fixed choice of x, \x\ < I, G(a, x) defines a unique function of 
a, which is analytic at all points of the finite complex plane except a - 0, 
where it has an essential singularity. Accordingly, 

G(a, x) = C0(x) + £ [Cn(x)an + C_n(x)a-n], 
n = l 

where the coefficients Cn(x), C_n(x) are uniquely determined by the chosen x. 

Now, G(a, x) = £(a_1, x), whence Cn(x) = C_n(x), for each positive inte-
ger n. Hence, 

(4) G(a, x) = C0(x) + ̂ C n W(a" +a""). 
n = l 

An easy calculation then establishes the following identity: 

G(axs x) = a"6x"3{?(a, x) . 
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With the help of (4) we expand both sides of this identity in powers of a, 
and subsequently equate coefficients of like powers to obtain the following 
recurrence: 

£»(*) = Cn_6(x)xn's. 

The coefficients CQ(x), (^(x), C2(x), C3(x), Ch (x), C5(x) are here undeter-
mined, but for all n > 5, we distinguish six cases, 

(i) n - 6m, (ii) n = 6m + 1, (iii) n = 6m + 2, 

(iv) n = 6m + 3, (v) n = 6??? + 4, (vi) n - 6m + 5, 

777 _> 0, and i t e r a t e t he r e c u r r e n c e to o b t a i n : 

C6n(x) =x3m2C0(x), C6m + 1(x) =xml3m + 1'>C1(x), C6m + 2(x) = xm^m + 2)C2{x), 

C6m + 3(x) « x3m<m + 1)C3(x), Cim+h(x) = x " ' 3 " ^ ^ ! ) , C6m + 5 ( x ) =x m ( 3 ' " + 5 ) C 5 ( x ) . 

Hence, 

(5) G(a, x) = CQ(x)Y,x3m2a6m + C1{x)j^xm{3m + 1) (a6m + 1 + a " 6 w - 1 ) 
o 

+ C2(x)f^xm(3m + 2)(a&m + 2 + a'6m-2) 
o 

+ ^ M i > 3 m ( m + i ) <a6w+3 + ^ _ 6 " 7 " 3 ) 
0 

o 

+ Cs(x)'jjrxm<3m + 5)(a6m + s + a"6"- 5). 
o 

To evaluate CQ9 Cl9 C2, C3, C. , and C5, we multiply identity (1) and the 
identity which results from (1) under the substitution a .-> a'1 to get 

O (1 -.xn)2G(a9 x) = P(x)a° + Q(x)(a + a"1) + R(x)(a2 + a"2) 
w-l 

+ Six) (a3 + a"3) + TCxXa4 + a-4) 

+ £/(#) (a5 + a"5) + a series in an, a"n, ft > 5. 

Between identity (5) and the foregoing identity, we eliminate the product 
G(a9 x) and, thereafter, equate coefficients of a0, a + a"1, ..., a5 + a"5 to 
get 

^o = Hx) 0(1 - x n r 2 , C, = Q(x) ft(l - * n ) ~ 2 , ^2 = R(x) fi (1 - x")" 2 , 
n = l n = l n = 1 



1982] CONSEQUENCES OF WATSON'S QUINTUPLE-PRODUCT IDENTITY 259 

C3 = S(x) 0(1 ~ xn)'\ Ch = T(x) n (1 ~ xn)~2
5 C5 = U(x) n (1 - ^ n ) " 2 -

n=l n = 1 n =i 

Substituting these values of Ci (i = 0, 1, ..., 5) into (5) we thus prove our 
theorem. 

Corollary 

For each complex number x such t h a t \x\ < 1, 

(6) n (1 - x*)6(l - x2""1)1* = - £ ,fc(3fc + l ) ' E (fe) 2^,3m2 

+ 2 > 3 * 2 £ (6m + D : 

— 00 —OO 

Proof: For given as ^s let F(a9 x) be defined by 

(1 - a)(l - a- 1)* 7^, #) = II (1 ~ xn)2G(a, x) , 
n= 1 

which is the left side of (2) . Now, put a = e t' , and for brevity 

/(*) = F(e2it, x). 

Identity (2) is hereby transformed into a new identity, the left side of which 
is 4/(t)sin2t. Hence, we multiply both sides of this new identity by 4" to 
get 

f ( t ) s in 2 t = P(x) 1 + 2 Z > 3 m 2 cos(12/??£) 
n = l 

Q(x) 
2 ^X 

o 
m(3m + l ) cos(12m + 2 ) t 

i?(aj) , m ( 3 m + 2 ) cos(12m + 4)£ + SixlJ2x3rnim + 1)cos(l2m + 6)£ 

T(x) , m (3 m + 4 ) :os(12m + 8) i + ^ - f > r a (3m + 5 ) cos(12m + 10)* . 
2 n 

We now differentiate the foregoing identity twice with respect to t to get' 

2/(t)cos2£ + 2 sin t Dt[f(t)cos t] + Dt[ff (£)sin2t] 

-2P(x) £ x 3 m ( 6 w ) 2 c o s ( 1 2 ^ t ) - 2 ^ W ^ a : 
1 0 

m (3m + l ) (6/w + l)2cos(12?7? + 2 ) t 
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2R(x) X > m ( 3 m + 2 ) (6m + 2)2cos(12w + 4 ) t 
o 

2S(x) J2x3m(m + 1) (6m + 3)2cos(12w + 6 ) t 
o 

2T(x) J2xm(3m + k) (6m + 4)2COS(12TT7 + 8 ) t 

0 

. m(3m + 5) 

In the foregoing we first put t = 0 and cancel a factor of 2 from both sides 
of the resulting identity. Of course, f(0) is the left side of (6). To get 
the right side, we then combine the 2nd and 6th, and the 3rd and 5th sums on 
the right side of the last-mentioned identity, while effecting some fairly 
obvious transformations along the way. 

3. Recurrences for r An) 

In order to carry out our present assignment, we also need the following 
well-known identities: 

n„n(3n+l)/2 (7) 11(1 - xn) = £(-Dn* 
n = 1 

(8) fi (1 - ar»)(l - x2"-1) = E (-ar)"2 . 
n = 1 - o o 

(7) is a famous result due to Euler, and both identities are easy conse-
quences of the celebrated Gauss-Jacobi triple-product identity [3, pp. 282-
284]. 

For convenience, put r(n) = v2(n). 

Theorem Z 

For each nonnegative integer n, 

(9) r(n) + 2 l(-l)J(3j-1)/2r(n- (3j + 1) /2) + (-iyu ~1) ,2r(n - (3j-l)/2)] 
J = I 

(-l)n [6(±m) + 1], if n = /7?(3w ± l)/2, 

0, otherwise, 

where summation extends as far as the arguments of r remain nonnegative. 

Proof: First of all, we recall that the generating function of r(n) is 
given by: 
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V -oo / n = 0 

We now rea l i ze that (3) i s equivalent to 

ft (1 - %n) fl (1 - xn)2(l - x2"-1)2 = f: (6n + l)xn(3n + 1)/2
s 

1 1 

whence [owing to (7) and (8)] 

JT(-l)V ( 3 n + 1 ) / 2 X>(n)(-x)n = E (6^ + l)* n ( 3 n + 1)/2. 
o 

Expanding the left side of the foregoing identity and thereafter equating 
coefficients of like powers of x5 we obtain the desired conclusion. 

Remarks 

It is of interest to compare the recursive determination (9) of the arith-
metical function v with similar ones for the partition function p and the 
sum-of-divisors function a. Accordingly, let us briefly recall that for a 
given positive integer n, p(n) denotes the number of unrestricted partitions 
of n, while o(n) denotes the sum of the positive divisors of n; convention-
ally, p(0) = lc From his identity, Euler derived the following recursive 
formulas for p and G. 

(10) pin) + £ {-iy[p{n - J(3J + l)/2) + p(n - J(3J - l)/2)] = 05 
J = I 

where n > 0 and summation extends as far as the arguments of p remain non-
negative. 

(11) o(n) + £ (-l)J'[a(n - J(3J + l)/2) + o(n - J(3J - l)/2)] 
J' = I 

( {-l)m + 1n3 if n = mOm ± l)/2, 

( 0S otherwise, 

where n > 0 and summation extends as far as the arguments of a remain posi-
tive. 

For proofs of (10) and (11), see [4, pp. 235-237]. 

Thus, for these three important arithmetical functions r9 p , and a, we 
have pentagonal-number recursive formulas for each of them. And for each of 
them one needs about 2/(2/3)n of the earlier values to compute a given value 
for large n. 

In [1] the author has also derived the following triangular-number recur-
sive formula for r: 



262 CONSEQUENCES OF WATSON'S QUINTUPLE-PRODUCT IDENTITY [Aug. 1982] 

(12) £ ( - l ) ^ " + 1 ) /Mn ~ J(J + D/2) 
j-o 

( 0, otherwise, 

where n >_ 0 and summation extends as far as the arguments of r remain non-
negative. 

We now observe that recursive formula (12) is more efficient than (9). 
For with (12) one needs about /2n of the earlier values in order to compute 
r{ri) for large n. 
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