# CHARACTERIZATION OF A SEQUENCE (Submitted June 1981) <br> JOSEPH McHUGH <br> La Salle College, Philadelphia, PA 19141 

In [1], Hoggatt and Johnson characterize all integral sequences $\left\{u_{n}\right\}$ satisfying

$$
\begin{equation*}
u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n} \tag{1}
\end{equation*}
$$

The purpose of this paper is to characterize all sequences which satisfy the relation

$$
\begin{equation*}
s_{n}^{2}-s_{m}^{2}=s_{n+m} s_{n-m} \tag{2}
\end{equation*}
$$

for all integers $m$ and $n$. Of necessity, we see that

$$
\begin{equation*}
s_{0}=0, \tag{3}
\end{equation*}
$$

while $m=-n$ yields

$$
\begin{equation*}
s_{-n}= \pm s_{n} \tag{4}
\end{equation*}
$$

for all integers $n$. Let $n=0$ in (2), then replace $m$ by $n$. This gives

$$
\begin{equation*}
s_{n}\left(s_{n}+s_{-n}\right)=0 \tag{5}
\end{equation*}
$$

for all integers $n$. Replacing $n$ by $n+1$ and $m$ by $n$ in (2) yields

$$
\begin{equation*}
s_{n+1}^{2}-s_{n}^{2}=s_{2 n+1} s_{1} \tag{6}
\end{equation*}
$$

for all integers $n$.
Letting $s_{1}=0$ in (6) and using mathematical inducation with (6) we see that $s_{n}=0$ for all nonnegative integers. However, by (4) we than have $s_{n}=$ 0 for all integers $n$. The sequence, all of whose terms are 0, obviously satisfies (2), so for the remainder of this paper we assume $s_{1}=a \neq 0$. By (5), we than have

$$
\begin{equation*}
s_{-n}=-s_{n} . \tag{7}
\end{equation*}
$$

Using (2) with $n=2 k+1, m=2 k-1$ and $n=2 k+2, m=2 k$, we obtain $s_{2 k+1}^{2}-s_{2 k-1}^{2}=s_{4 k} s_{2}$ and $s_{2 k+2}^{2}-s_{2 k}^{2}=s_{4 k+2} s_{2}$, so that when $s_{2}=0$ we have

$$
\begin{equation*}
s_{2 k+1}= \pm s_{2 k-1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{2 k+2}= \pm s_{2 k} . \tag{9}
\end{equation*}
$$

Mathematical induction and (9) together with (7) imply that $s_{2 n}=0$ for all integers $n$. Furthermore, (8) and mathematical induction together with (7) tell us that $s_{2 n+1}= \pm \alpha$ for all integers. However, $s_{2 n}^{2}-s_{1}^{2}=s_{2 n+1} s_{2 n-1}$, so $-s_{1}^{2}=s_{2 n+1} s_{2 n-1}$ showing that $s_{2 n+1}$ and $s_{2 n-1}$ have opposite signs. Therefore, with $s_{1}=\alpha \neq 0$ and $s_{2}=0$, we have

$$
s_{n}=\left\{\begin{align*}
& \alpha, n \equiv 1(\bmod 4)  \tag{10}\\
&-\alpha, n \equiv-1(\bmod 4) \\
& 0, \text { otherwise }
\end{align*}\right.
$$

The sequence just calculated in (10) is a solution to the problem at hand because, if $n$ and $m$ are of the same parity, then $m+n$ and $m-n$ are even, and $s_{n}^{2}=s_{m}^{2}$ so $s_{n}^{2}-s_{m}^{2}=0=s_{n+m} s_{n-m}$. If $n$ is odd and $m$ is even, then $n+m$ and $n-m$ are odd and separated by $2 m$, which is a multiple of 4. Hence,

$$
s_{n+m} s_{n-m}=a^{2}=s_{n}^{2}-s_{m}^{2} .
$$

Similarly, if $n$ is even and $m$ is odd.
Throughout the remainder of this paper, we assume that $s_{2}=b \neq 0$ and $s_{1}=a \neq 0$. From (6) and (2),

$$
a s_{2 n+1}=s_{n+1}^{2}-s_{n}^{2}=\left(s_{n+1}^{2}-s_{n-1}^{2}\right)-\left(s_{n}^{2}-s_{n-1}^{2}\right)=b s_{2 n}-a s_{2 n-1},
$$

so that

$$
\begin{equation*}
s_{2 n+1}=\frac{b s_{2 n}-\alpha s_{2 n-1}}{a}, \text { for all } n \tag{11}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
a\left(s_{2 n+1}+s_{2 n-1}\right)=b s_{2 n} . \tag{12}
\end{equation*}
$$

Now

$$
\begin{aligned}
s_{n+2}^{2}-s_{n}^{2} & =b s_{2 n+2}=\left(s_{n+2}^{2}-s_{n-1}^{2}\right)+\left(s_{n-1}^{2}-s_{n}^{2}\right) \\
& =s_{3} s_{2 n+1}+s_{2 n-1} s_{-1}
\end{aligned}
$$

Furthermore, by (11), $s_{3}=\left(b^{2}-a^{2}\right) / a$ and by (7), $s_{-1}=-a$. Hence, substitution and (12) yield

$$
\begin{align*}
b s_{2 n+2} & =\frac{b^{2}-a^{2}}{a} s_{2 n+1}-a s_{2 n-1}  \tag{13}\\
& =\frac{b^{2}}{a} s_{2 n+1}-a\left(s_{2 n+1}+s_{2 n-1}\right) \\
& =\frac{b^{2}}{a} s_{2 n+1}-b s_{2 n}
\end{align*}
$$

Hence,

$$
\begin{equation*}
s_{2 n+2}=\frac{b s_{2 n+1}-a s_{2 n}}{a} \text {, for all } n \tag{14}
\end{equation*}
$$

Combining (11) and (14), we have

$$
\begin{equation*}
s_{k+1}=\frac{b s_{k}-a s_{k-1}}{a} \text {, for all } k \tag{15}
\end{equation*}
$$

Therefore, the only sequences other than the two exceptions which might satisfy (2) for all $n$ and $m$ must be second-order linear recurrences of the form (15), where $s_{1}=a \neq 0$ and $s_{2}=b \neq 0$.

Using standard techniques with

$$
\alpha=\frac{b+\sqrt{b^{2}-4 a^{2}}}{2 a} \quad \text { and } \quad \beta=\frac{b-\sqrt{b^{2}-4 a^{2}}}{2 a}
$$

as the roots of $a x^{2}-b x+a=0$, we see that, for all integers $n$,

$$
s_{n}= \begin{cases}\frac{\alpha\left(\alpha^{n}-\beta^{n}\right)}{\alpha-\beta}, & b \neq \pm 2 \alpha  \tag{16}\\ n \alpha, & b=2 \alpha \\ (-1)^{n+1} n \alpha, & b=-2 \alpha\end{cases}
$$

If $s_{n}=n \alpha$ or $s_{n}=(-1)^{n+1} n a$ for all $n$, then it is easy to verify the truth of (2). Hence, we assume $b \neq \pm 2 \alpha$; then, with $\alpha \beta=1$, we have

$$
\begin{aligned}
s_{n}^{2}-s_{m}^{2} & =\left(\frac{\alpha}{\alpha-\beta}\right)^{2}\left[\left(\alpha^{2 n}-2+\beta^{2 n}\right)-\left(\alpha^{2 m}-2+\beta^{2 m}\right)\right] \\
& =\left(\frac{\alpha}{\alpha-\beta}\right)^{2}\left(\alpha^{2 n}-\alpha^{2 m}+\beta^{2 n}-\beta^{2 m}\right)
\end{aligned}
$$

Furthermore,

$$
s_{n+m} s_{n-m}=\left(\frac{\alpha}{\alpha-\beta}\right)^{2}\left(\alpha^{2 n}-\alpha^{2 m}+\beta^{2 n}-\beta^{2 m}\right),
$$

and again (2) is true for all integers $n$ and $m$. Thus, we have found all sequences satisfying (2) for all integers $n$ and $m$.

It is interesting to note that the Fibonacci and Lucas sequences do not satisfy (15). However, the sequence of Fibonacci numbers $\left\{F_{2 n}\right\}_{n=1}^{\infty}$ does, if we let $a=1$ and $b=3$, for then

$$
\alpha=\frac{3+\sqrt{5}}{2}=\left(\frac{1+\sqrt{5}}{2}\right)^{2}, \beta=\left(\frac{1-\sqrt{5}}{2}\right)^{2}, \text { and } s_{n}=F_{2 n}
$$

Another interesting example of such a sequence is found by letting $s_{1}=1$ and $s_{2}=i$, then

$$
s_{3}=-2, s_{4}=-3 i, s_{5}=5, s_{6}=8 i, s_{7}=-13, s_{8}=-21 i, \text { etc. }
$$

It should be noted that $s_{n}$ is an integer for all integers $n$ if and only if $a$ and $b$ are integers and $a$ divides $b$ ．This follows directly by using the recursive formula in the form

$$
s_{n+1}=\frac{b}{a} s_{n}-s_{n-1},
$$

for then，by induction，
$s_{k}=\frac{b^{k-1}}{a^{k-2}}+$（integer）$\frac{b^{k-3}}{a^{k-4}}+\cdots+$（integer）$\frac{b^{3}}{a^{2}}+$（integer）$b, k$ even and

$$
s_{k}=\frac{b^{k-1}}{a^{k-2}}+\text { (integer) } \frac{b^{k-3}}{a^{k-4}}+\cdots+\text { (integer) } \frac{b^{2}}{a}+\text { (integer) } a, k \text { odd. }
$$

Hence，by induction，$s_{n} \varepsilon Z$ if and only if $a^{n}$ divides $b^{n+1}$ for all $n \geq 3$ ，but then $a$ must divide $b$ ．

Also note that if $a$ divides $b$ ，then $a$ divides $s_{n}$ for all integers $n$ ． Hence，the only integral solutions to the problem are multiples of those gen－ erated by letting $s_{1}=1$ and $s_{2}=b$ ，where $b$ is an integer．

## Acknowledgment

I am greatly indebted to the editor for his streamlined approach to this article．

## Reference

V．E．Hoggatt，Jr．and Marjorie Bicknell Johnson．＂A Primer for the Fibonacci Numbers XVII：Generalized Fibonacci Numbers Satisfying $u_{n+1} u_{n-1}-u_{n}^{2}=$ $\pm 1 . "$ The Fibonacci Quarterly 16，no． 2 （1978）：130－37．

