A NOTE ON THE FAREY-FIBONACCI SEQUENCE (Submitted October 1980)

K. C. PRASAD

Ranchi University, India

1. Introduction

The Fibonacci sequence $\left\{F_{n}: n \geq 0\right\}$ is defined as

$$
F_{0}=1, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2 .
$$

Let $r_{i, j}=F_{i} / F_{j}$. Alladi [1] defined a Farey-Fibonacci sequence f_{n} of order n as the sequence obtained by arranging the terms of the set

$$
\sum_{n}=\left\{r_{i, j} \mid 1 \leq i<j \leq n\right\}
$$

in ascending order and studied its properties in detail. Alladi [2] and Gupta [3] gave rapid methods to write out f_{n}. Finally, Alladi and Shannon [4] briefly considered certain special properties of consecutive members of f_{n}.

We now prescribe a different scheme to write out f_{n}, which is rapid, direct, and simpler than the earlier approaches. We not only obtain the termnumber of a preassigned member of f_{n} as found by Gupta[3], but also a formula for the general term of f_{n} not explicitly obtained before.

2. Scheme

Let us write out the terms of \sum_{n} in a triangular array as shown below:

$$
\begin{array}{r}
r_{1, n} ; r_{1, n-1} ; r_{1, n-2} ; \ldots ; r_{1,1+n-i} ; \ldots ; r_{1,2} \\
r_{2, n} ; r_{2, n-1} ; \ldots ; r_{2,2+n-i} ; \ldots ; r_{2,3} \\
r_{3, n} ; \ldots ; r_{3,3+n-i} ; \ldots ; r_{3,4}
\end{array}
$$

.

$$
r_{i, n} ; \ldots ; r_{i, i+1}
$$

$$
r_{n-1, n}
$$

Next, we designate the terms of the i th column of this array by

$$
x_{1}, x_{2}, \ldots, x_{i} .
$$

Clearly, $x_{j}=r_{j, j+n-i}$ for $1 \leq j \leq i$. Observe that
(i) $x_{1}<x_{2}$, an inequality equivalent to $F_{n-i}<F_{1+n-i}$
and
(ii) x_{k} 1ies between x_{k-1} and x_{k-2} for $3 \leq k \leq i$, a consequence of the simple rule that the fraction

$$
\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)
$$

lies between h / k and h^{\prime} / k^{\prime}.
Let $a_{i, 1} ; a_{i, 2} ; \ldots ; a_{i, i}$ denote the sequence obtained by arranging the x^{\prime} s in ascending order. Then the observations (i) and (ii) above imply
(A)

$$
\begin{aligned}
& a_{i, 1}=x_{1} ; a_{i, i}=x_{2} \\
& a_{i, 2}=x_{3} ; a_{i, i-1}=x_{4} \\
& \text { and so on. }
\end{aligned}
$$

In fact, the x 's arranged in ascending order are

$$
x_{1}, x_{3}, x_{5}, \ldots, x_{6}, x_{4}, x_{2} .
$$

This reveals the scheme of writing, in ascending order, the members of any given column of the above array.

Now since $\alpha_{i, i}<\alpha_{i+1,1}$ for $1 \leq i \leq n-1$ is equivalent to $F_{n-i}<F_{1+n-i}$ for $1 \leq i \leq n-1$, we get f_{n} as follows:

$$
\begin{gathered}
a_{1,1} ; a_{2,1} ; a_{2,2} ; \ldots ; a_{i, 1} ; a_{i, 2} ; \ldots \\
\ldots a_{i, i} ; a_{i+1,1} ; a_{i+2,2} ; \ldots, a_{i+1, i+1} ; \ldots ; a_{n-1,1} ; \ldots ; a_{n-1, n-1} .
\end{gathered}
$$

3. Formulas

I. If F_{q} / F_{m} is the th term $\left(T_{t}\right)$ of f_{n}, then

$$
t=\left\{\begin{array}{l}
\frac{1}{2}(n-m+q)(n-m+q-1)+\frac{q+1}{2}: \text { if } q \text { is odd, } \\
\frac{1}{2}(n-m+q)(n-m+q-1)+n-m+\frac{q}{2}+1: \text { if } q \text { is even. }
\end{array}\right.
$$

Proof: If F_{q} / F_{m} or $r_{q, m}$ appears in the i th column of the array, then obviously $m-q=n-i, t=\frac{1}{2} i(i-1)+j$, and from (A) $j=M$ or $i-M+1$ according as $q=2 M-1$ or $2 M$, respectively. Thus t is apparent.
II. The following is the formula for the th term of f_{n} :

$$
T_{t}=F_{i-2|k|+\delta(i, k)} \mid F_{n-2|k|+\delta(i, k)},
$$

where

$$
i=\left\{\begin{array}{cc}
{[\sqrt{(2 t-2)}] \quad} & \text { if } 2 t \leq[\sqrt{(2 t-2)}]([\sqrt{(2 t-2)}]+1) \\
{[\sqrt{(2 t-2)}]+1} & \text { otherwise }, \\
k=t-i(i-1) / 2-[(i+1) / 2]
\end{array}\right.
$$

and

$$
\delta(i, k)=\left\{\begin{array}{lll}
-1 & \text { if } & i \text { is even and } k \leq 0 \\
0 & \text { if } & i \text { is odd and } k \leq 0 \\
1 & \text { if } & i \text { is odd and } k>0 \\
2 & \text { if } & i \text { is even and } k>0
\end{array}\right.
$$

Proof: If T_{t} appears in the i th column of the array, then

$$
i(i-1) / 2+1 \leq t \leq(i+1)_{i} / 2
$$

and consequently i is as described above. Furthermore, if
then

$$
T_{t}=a_{i, j}=x_{p}=r_{p, p+n-i},
$$

$$
i(i-1) / 2+j=t
$$

To find p, we examine its dependence on k where $j=[(i+1) / 2]+k$. From relations (A) it is clear that

$$
\text { for even } i, p= \begin{cases}i+2 k-1 & \text { if } k \leq 0 \\ i-2 k+2 & \text { if } k>0\end{cases}
$$

and

$$
\text { for odd } i, p= \begin{cases}i+2 k & \text { if } k \leq 0 \\ i-2 k+1 & \text { if } k>0\end{cases}
$$

These observations suffice.

References

1. K. Alladi. "A Farey Sequence of Fibonacci Numbers." The Fibonacci Quarterly 13, no. 1 (1975):1-10.
2. K. Alladi. "A Rapid Method to Form Farey-Fibonacci Fractions." The Fibonacci Quarterly 13, no. 1 (1975):31-32.
3. H. Gupta. "A Direct Method of Obtaining Farey-Fibonacci Sequences." The Fibonacci Quarterly 14, no. 4 (1976):389-91.
4. A. G. Shannon and K. Alladi. "On a Property of Consecutive Farey-Fibonacci Fractions." The Fibonacci Quarterly 15, no. 2 (1977):153-55.
