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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn+2 = ^ n + l + Fn> F0 = °> Fl = *• 
and 

£n+2 = Ln + l +Ln> L0 = 2 ' L l = 1-

Also, a and b designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-484 Proposed by Philip L. Mana, Albuquerque, NM 

For a given x,what is the least number of multiplications needed to cal-
culate x98? (Assume that storage is unlimited for intermediate products.) 

B-485 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Find the complete solution un to the difference equation 

un + 2 ~ 5un+l + 6^n = 1lFn - 4F„+2. 

B-486 Proposed by Valentina Bakinova, Rondout Valley, NY 

Prove or disprove that» for every positive integer k, 

JP 7? J? JP TP 7? 
k+1 . k+3 . k+5 , . T, . . k+6 . fc + it . k+2 

-p— < -j— < ~Y~ < • • < « * < • • • < - y - < -f— < -p— • 
1 3 5 6 h 2 
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B-487 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove thats for all positive integers n, 

5Lhn ~ Lln + 6 " 6(-l^^2n E °  (mod l0Fn) • 

B-488 Proposed by Herta T. Freitag, Roanoke, VA 

Let a and d be positive integers with d odd. Prove or disprove that for 
all positive integers h and k, 

La+hd + La+hd+d ~ La+ka + La+kd+d ^ m ° d Ld) • 

B-489 Proposed by Herta T. Freitag, Roanoke, VA 

Is there a Fibonacci analogue (or semianalogue) of B-488? 

SOLUTIONS 

Pythagorean Triples 

B-457 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that there exists a positive integer b such that the 
Pythagorean-type relationship (5F2)2 + b2 E (L2,)2 (mod 5m2) holds for all m 
and n with m\Fn . 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We will show that the specified Pythagorean-type relationship holds with 
b = 4. Since 

^n = 5F* + 4(-l)n, (L2)2 = (5F2)2 + 8(-l)n(5F2) + 42, 

we have 
(5F2)2 + 42 E (L2)2 (mod 5F2). 

Hence3 for all m such that w divides Fn 9 

(5F2)2 + 42 E (L2)2 (mod 5m2). 

Also solved by Paul 5. Bruckman, Frank Higgins, Sahib Singh, Lawrence Somer, 
and the proposer. 

Prime Difference of Triangular Numbers 

B-458 Proposed by H. Klauser, Zurich, Switzerland 

Let Tn be the triangular number n(n + l)/2* For which positive integers 
k do there exist positive integers n such that Tn+k - Tn is a prime? 
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Solution by Lawrence Somer, Washington, B.C. 

The answer is k = 1 or k = 2. Note that 

?n+fe " Tn " (w + fe)(« .+ ̂  + l)/2 - n(n + l)/2 

- (k2 + fc + 2n&)/2 = k(k + 2n + l)/2. 

If ^n + fc - y« i s prime, then k = 1 or fc/2 = 1 since & + 2n+ 1 > fc. If fc = 1, 
then n = p- 1, where p is prime, suffices to make Tn+k~Tn prime. If /c = 2, 
then n = (p- 3)/2, where p is prime, suffices to make Tn+k - Tn prime. 

Also solved by Paul Bruckman, Herta Freitag, Frank Higgins, Walther Janous, 
Peter Lindstrom, Boh Prielipp, Sahib Singh, J. Suck, Gregory Wulczyn, and the 
proposer. 

Incongruent Differences 

B-459 Proposed by E. E. McDonnell, Palo Alto, CA and 
J. O. Shallit, Berkeley, CA 

Let g be a primitive root of the odd prime p. For 1 < i < p - 1, let a^ 
be the integer in S = {0, 1, ..., p - 2} with gai= £ (mod p). Show that 

^ 2 ~" ^1» ^ 3 ~~ <^2* •••» ^p - 1 "" ^p - 2 

(differences taken mod p - 1 to be in 5) , is a permutation of 1, 2, ..„, p- 2. 

Solution by Lawrence Somer, Washington, B.C. 

Suppose that cii + 1 - ai = <Z-- + 1 - #j (mod p - 1), where 1 < £ < J < p - 2. 
Then 

gai + 1 - a i = gdj + i-aj ( m o d pj 

or 
gai + l/ga*= (i+ l)/i= ga'"lga*=ti + i)/j (mod p) . 

Since neither £ nor j E 0 (mod p), this implies that 

(i + l)j = £j + 3 = £(j + 1) = ij + £ (mod p). 

However, this is a contradiction, since -i ^ j (mod p). 

Also solved by Pauls. Bruckman, Frank Higgins, Walther Janous, Bob Prielipp, 
Sahib Singh, and the proposer. 

First of a Pair 

B-460 Proposed by Larry Taylor, Rego Park, NY 

For all integers j, k9 n, prove that 

FkFn + j " FjFn+k = (""̂  Fk-jFn' 
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Solution by A. G. Shannon, New South Wales I.T., Australia 

FkFn+j - FjFn + k = (a* - &*)(aB+' - bn+s')/5 - (a* - b')(an+k - bn+k) 

- (afe)"7'(a""-7' - ̂ - ^ ( a " - bn)/5 

= (-DJ>ft.^„ -

Also solved by Clyde Bridger, Paul Bruckman, D. K. Chang, Herta Freitag, John 
Ivie, Walther Janous, John Milsom, Boh Prielipp, Heinz-Jurgen Seiffert, Sahib 
Singh, Gregory Wulczyn, and the proposer. 

Companion Identity 

B-461 Proposed by Larry Taylor, Rego Park, NY 

For all integers j s k, ns prove or disprove that 

FkLn+j " FjLn+k = (-1)° Fk-jLn* 

Solution by Paul S. Bruckman, Sacramento, CA 

The following relation follows readily from the Binet definitions: 

KLV =FV + U - <-l)uF„_„. (1) 
Therefore, 

Fk^n + j " Fj-^n + k ~ Fn + j + k "" (""•*-' Fn+j-k ™ Fn + k + j + (""•*•) Fn+k~j 

= (-iy(Fn+k.j - (-Dk-JFn_„..,) 

= {-lYFk_.Ln 

[using (1) again, with u = k - j 9 V ~ n], 

Also solved by Clyde Bridger, Herta Freitag, John Ivie, Walther Janous, John 
Milsom, Bob Prielipp, A. G. Shannon, Sahib Singh, Gregory Wulczyn, and the 
proposer. 

Typographical Monstrosity 

B-462 Proposed by Herta T. Freitag, Roanoke, VA 

Let L(n) denote Ln and Tn = n(n + l)/2. Prove or disprove* 

L(n) = (-lf"~nL(Tn„1)L(Tn) -L(n2)]. 

Solution by John W. Milsom, Butler County Community College, Butler, PA 

Using L(n) = Ln = an + bn, ah = -1, and Tn = n(n + l)/2, it follows that 
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The number n(n - 1) is always even, so that (-l)n(n"1) = l. Thus 

L{n) = {-l)T^-nL{Tn_1)L(Tn) -L(n2)]. 

Also solved by Clyde Bridger, Paul Bruckman, Walther Janous, Bob Prielipp, 
Sahib Singh, Gregory Wulczyn, and the proposer. 

Casting Out Fives 

B-463 Proposed by Herta T. Freitag, Roanoke, VA 

Using the notations of B-462, prove or disprove: 

L(n) = (-l)2'B-1L(n2) (mod 5). 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We shall prove that the given congruence holds. Let F(n) denote Fn. It 
is known that 

L(a + b) - (~i)hL(a - b) = 5F(a)F(b) 

[see (10) and (12) on p. 115 of the April 1975 issue of this journal.] Hence, 

L(Tn + yn.,) - (-l)T»-*UTn - Tn_1) = 5F{Tn)F{Tn_1) 
so 

L(n2) - (-l)^-1L(n) = 0 (mod 5). 

The desired result follows almost immediately. 

Also solved by Clyde Bridger, Paul Bruckman, Walther Janous, Sahib Singh, 
Gregory Wulczyn, and the proposer, 

Consequence of a Hoggatt Identity 

B-464 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let n and w be integers with w odd. Prove or disprove: 

^n + 2w n + w ~~ Aj^n +w^n -w ~~ ^ n-w n-2w ~~ ^3w " ^w'^n * 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

The given equation is equivalent to: 

-^n+2w^n + w ~ ^n-w^n- 2w ~ ^3w^n ~ ^w^n + w^n-w "" "n >> ' 

Using J19 {Fibonacci and Lucas Numbers by Hoggatt), the right side 

= 2(-D%Fw
2. 

Expressing the left side of the above equation in a and b9 it simplifies to 
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^-f^-(L3w + L y ) - 2(-l)%Fw
2. 

Also solved by Paul Bruckman, Herta Freitag, Walther Janous, Bob Prielipp, 
M. Wachtel, and the proposer. 

Evenly Proportioned 

B-465 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For positive integers n and k9 prove or disprove: 

F + F + F + - - - + F , F 
2k Sk lOfc Un-2)fc ink 

L2k + LSk + L10k + '•• + L
{hn.2)k L2nk ' 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

Expressing 
„2k -L2k 

F,. = ̂  Z_£_ and L = a
2k + b2k, 

the left side of the equation simplifies to 

77 _ 7? — 977 
£(hn+2)k (hn-2)k r 2k 

^{hn + 2)k ^{hn-2)k 

Using I2h and J16 (Fibonacci and Lucas Numbers by Hoggatt) successively, the 
above becomes 

5F07Fj 7 2k 2nk 

£J(itn + 2)k " ^{hn- 2)k 

Since L(t „,, - Ln ow = 5F07 F0 .£_ 7 , we are done. 
C+n + 2)k (4n-2)k 2k 2nk 2nk 

Also solved by Clyde Bridger, Paul Bruckman, Herta Freitag, Bob Prielipp, and 
the proposer. 


