ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

A. P. HILLMAN

University of New Mexico, Albuquerque, NM 87131

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each problem or solution should be on a separate sheet (or sheets). Preference will be given to those that are typed with double spacing in the format used below. Solutions should be received within 4 months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

Also, a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE

B-484 Proposed by Philip L. Mana, Albuquerque, NM

For a given x, what is the least number of multiplications needed to calculate x^{98} ? (Assume that storage is unlimited for intermediate products.)

B-485 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA

Find the complete solution u_{n} to the difference equation

$$
u_{n+2}-5 u_{n+1}+6 u_{n}=11 F_{n}-4 F_{n+2}
$$

B-486 Proposed by Valentina Bakinova, Rondout Valley, NY
Prove or disprove that, for every positive integer k,

$$
\frac{F_{k+1}}{F_{1}}<\frac{F_{k+3}}{F_{3}}<\frac{F_{k+5}}{F_{5}}<\ldots<a^{k}<\ldots<\frac{F_{k+6}}{F_{6}}<\frac{F_{k+4}}{F_{4}}<\frac{F_{k+2}}{F_{2}}
$$

$B-487$ Proposed by Herta T. Freitag, Roanoke, VA
Prove or disprove that, for all positive integers n,

$$
5 L_{4 n}-L_{2 n}^{2}+6-6(-1)^{n} L_{2 n} \equiv 0\left(\bmod 10 F_{n}^{2}\right)
$$

B-488 Proposed by Herta T. Freitag, Roanoke, VA
Let a and d be positive integers with d odd. Prove or disprove that for all positive integers h and k,

$$
L_{a+h d}+L_{a+h d+d} \equiv L_{a+k d}+L_{a+k d+d}\left(\bmod L_{d}\right)
$$

B-489 Proposed by Herta T. Freitag, Roanoke, VA
Is there a Fibonacci analogue (or semianalogue) of $B-488$?

SOLUTIONS

Pythagorean Triples

B-457 Proposed by Herta T. Freitag, Roanoke, VA
Prove or disprove that there exists a positive integer b such that the Pythagorean-type relationship $\left(5 F_{n}^{2}\right)^{2}+b^{2} \equiv\left(L_{n}^{2}\right)^{2}\left(\bmod 5 m^{2}\right)$ holds for all m and n with $m \mid F_{n}$.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI

We will show that the specified Pythagorean-type relationship holds with $b=4$. Since

$$
L_{n}^{2}=5 F_{n}^{2}+4(-1)^{n},\left(L_{n}^{2}\right)^{2}=\left(5 F_{n}^{2}\right)^{2}+8(-1)^{n}\left(5 F_{n}^{2}\right)+4^{2}
$$

we have

$$
\left(5 F_{n}^{2}\right)^{2}+4^{2} \equiv\left(L_{n}^{2}\right)^{2}\left(\bmod 5 F_{n}^{2}\right)
$$

Hence, for all m such that m divides F_{n},

$$
\left(5 F_{n}^{2}\right)^{2}+4^{2} \equiv\left(L_{n}^{2}\right)^{2}\left(\bmod 5 m^{2}\right)
$$

Also solved by Paul S. Bruckman, Frank Higgins, Sahib Singh, Lawrence Somer, and the proposer.

Prime Diffexence of Triangular Numbers

B-458 Proposed by H. Klauser, Zurich, Switzerland
Let T_{n} be the triangular number $n(n+1) / 2$. For which positive integers k do there exist positive integers n such that $T_{n+k}-T_{n}$ is a prime?

Solution by Lawrence Somer, Washington, D.C.
The answer is $k=1$ or $k=2$. Note that

$$
\begin{aligned}
T_{n+k}-T_{n} & =(n+k)(n+k+1) / 2-n(n+1) / 2 \\
& =\left(k^{2}+k+2 n k\right) / 2=k(k+2 n+1) / 2
\end{aligned}
$$

If $T_{n+k}-T_{n}$ is prime, then $k=1$ or $k / 2=1$ since $k+2 n+1>k$. If $k=1$, then $n=p-1$, where p is prime, suffices to make $T_{n+k}-T_{n}$ prime. If $k=2$, then $n=(p-3) / 2$, where p is prime, suffices to make $T_{n+k}-T_{n}$ prime.

Also solved by Paul Bruckman, Herta Freitag, Frank Higgins, Walther Janous, Peter Lindstrom, Bob Prielipp, Sahib Singh, J. Suck, Gregory Wulczyn, and the proposer.

Incongruent Differences

B-459 Proposed by E. E. McDonnell, Palo Alto, CA and J. O. Shallit, Berkeley, CA

Let g be a primitive root of the odd prime p. For $1 \leqslant i \leqslant p-1$, let a_{i} be the integer in $S=\{0,1, \ldots, p-2\}$ with $g^{a_{i}} \equiv i(\bmod p)$. Show that

$$
a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{p-1}-a_{p-2}
$$

(differences taken mod $p-1$ to be in S), is a permutation of $1,2, \ldots, p-2$. Solution by Lawrence Somer, Washington, D.C.

Suppose that $\alpha_{i+1}-\alpha_{i} \equiv \alpha_{j+1}-\alpha_{j}(\bmod p-1)$, where $1 \leqslant i<j \leqslant p-2$. Then

$$
g^{a_{i+1}-a_{i}} \equiv g^{a_{j+1}-a_{j}}(\bmod p)
$$

or

$$
g^{a_{i+1}} / g^{a_{i}} \equiv(i+1) / i \equiv g^{a_{j+1}} / g^{a_{j}} \equiv(j+1) / j(\bmod p)
$$

Since neither i nor $j \equiv 0(\bmod p)$, this implies that

$$
(i+1) j=i j+j \equiv i(j+1)=i j+i(\bmod p)
$$

However, this is a contradiction, since $i \not \equiv j(\bmod p)$.
Also solved by Paul S. Bruckman, Frank Higgins, Walther Janous, Bob Prielipp, Sahib Singh, and the proposer.

First of a Pair

B-460 Proposed by Larry Taylor, Rego Park, NY
For all integers j, k, n, prove that

$$
F_{k} F_{n+j}-F_{j} F_{n+k}=(-1)^{j} F_{k-j} F_{n}
$$

Solution by A. G. Shannon, New South Wales I.T., Australia

$$
\begin{aligned}
F_{k} F_{n+j}-F_{j} F_{n+k} & =\left(a^{k}-b^{k}\right)\left(a^{n+j}-b^{n+j}\right) / 5-\left(a^{j}-b^{j}\right)\left(a^{n+k}-b^{n+k}\right) \\
& =(a b)^{j}\left(a^{k-j}-b^{k-j}\right)\left(a^{n}-b^{n}\right) / 5 \\
& =(-1)^{j} F_{k-j} F_{n}
\end{aligned}
$$

Also solved by Clyde Bridger, Paul Bruckman, D. K. Chang, Herta Freitag, John Ivie, Walther Janous, John Milsom, Bob Prielipp, Heinz-Jurgen Seiffert, Sahib Singh, Gregory Wulczyn, and the proposer.

Companion Identity

B-461 Proposed by Larry Taylor, Rego Park, NY
For all integers j, k, n, prove or disprove that

$$
F_{k} L_{n+j}-F_{j} L_{n+k}=(-1)^{j} F_{k-j} L_{n}
$$

Solution by Paul S. Bruckman, Sacramento, CA
The following relation follows readily from the Binet definitions:

$$
\begin{equation*}
F_{u} L_{v}=F_{v+u}-(-1)^{u} F_{v-u} . \tag{1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
F_{k} L_{n+j}-F_{j} L_{n+k} & =F_{n+j+k}-(-1)^{k} F_{n+j-k}-F_{n+k+j}+(-1)^{j} F_{n+k-j} \\
& =(-1)^{j}\left(F_{n+k-j}-(-1)^{k-j} F_{n-(k-j)}\right) \\
& =(-1)^{j} F_{k-j} L_{n}
\end{aligned}
$$

[using (1) again, with $u=k-j, v=n$].
Also solved by Clyde Bridger, Herta Freitag, John Ivie, Walther Janous, John Milsom, Bob Prielipp, A. G. Shannon, Sahib Singh, Gregory Wulczyn, and the proposer.

Typographical Monstrosity

B-462 Proposed by Herta T. Freitag, Roanoke, VA
Let $L(n)$ denote L_{n} and $T_{n}=n(n+1) / 2$. Prove or disprove:

$$
L(n)=(-1)^{T_{n-1}}\left[L\left(T_{n-1}\right) L\left(T_{n}\right)-L\left(n^{2}\right)\right]
$$

Solution by John W. Milsom, Butler County Community College, Butler, PA
Using $L(n)=L_{n}=a^{n}+b^{n}, a b=-1$, and $T_{n}=n(n+1) / 2$, it follows that

$$
(-1)^{T_{n-1}}\left[L\left(T_{n-1}\right) L\left(T_{n}\right)-L\left(n^{2}\right)\right]=(\alpha b)^{n(n-1)}\left(a^{n}+b^{n}\right)=(-1)^{n(n-1)} L_{n}
$$

[Nov.

The number $n(n-1)$ is always even, so that $(-1)^{n(n-1)}=1$. Thus

$$
L(n)=(-1)^{T_{n-1}}\left[L\left(T_{n-1}\right) L\left(T_{n}\right)-L\left(n^{2}\right)\right]
$$

Also solved by Clyde Bridger, Paul Bruckman, Walther Janous, Bob Prielipp, Sahib Singh, Gregory Wulczyn, and the proposer.

Casting Out Fives

B-463 Proposed by Herta T. Freitag, Roanoke, VA
Using the notations of $B-462$, prove or disprove:

$$
L(n) \equiv(-1)^{T_{n-1}} L\left(n^{2}\right)(\bmod 5) .
$$

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
We shall prove that the given congruence holds. Let $F(n)$ denote F_{n}. It is known that

$$
L_{1}(a+b)-(-1)^{b} L(\alpha-b)=5 E(\alpha) F(b)
$$

[see (10) and (12) on p. 115 of the April 1975 issue of this journa1.] Hence,
so

$$
\begin{gathered}
L\left(T_{n}+T_{n-1}\right)-(-1)^{T_{n-1}} L\left(T_{n}-T_{n-1}\right)=5 F\left(T_{n}\right) F\left(T_{n-1}\right) \\
L\left(n^{2}\right)-(-1)^{T_{n-1}} L(n) \equiv 0(\bmod 5) .
\end{gathered}
$$

The desired result follows almost immediately.
Also solved by Clyde Bridger, Paul Bruckman, Walther Janous, Sahib Singh, Gregory Wulczyn, and the proposer.

Consequence of a Hoggatt Identity

B-464 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Let n and w be integers with w odd. Prove or disprove:

$$
F_{n+2 w} F_{n+w}-2 L_{w} F_{n+w} F_{n-w}-F_{n-w} F_{n-2 w}=\left(L_{3 w}-2 L_{w}\right) F_{n}^{2}
$$

Solution by Sahib Singh, Clarion State College, Clarion, PA
The given equation is equivalent to:

$$
F_{n+2 w} F_{n+w}-F_{n-w} F_{n-2 w}-L_{3 w} F_{n}^{2}=2 L_{w}\left(F_{n+w} F_{n-w}-F_{n}^{2}\right)
$$

Using I_{19} (Fibonacci and Lucas Numbers by Hoggatt), the right side

$$
=2(-1)^{n} L_{w} F_{w}^{2} .
$$

Expressing the left side of the above equation in a and b, it simplifies to

$$
\frac{2(-1)^{n}}{5}\left(L_{3 w}+L_{w}\right)=2(-1)^{n} L_{w} F_{w}^{2} .
$$

Also solved by Paul Bruckman, Herta Freitag, Walther Janous, Bob Prielipp, M. Wachtel, and the proposer.

Evenly Proportioned

B-465 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA

For positive integers n and k, prove or disprove:

$$
\frac{F_{2 k}+F_{6 k}+F_{10 k}+\cdots+F_{(4 n-2) k}}{L_{2 k}+L_{6 k}+L_{10 k}+\cdots+L_{(4 n-2) k}}=\frac{F_{2 n k}}{L_{2 n k}}
$$

Solution by Sahib Singh, Clarion State College, Clarion, PA

Expressing

$$
F_{2 k}=\frac{a^{2 k}-b^{2 k}}{\sqrt{5}} \text { and } L_{2 k}=a^{2 k}+b^{2 k}
$$

the left side of the equation simplifies to

$$
\frac{F_{(4 n+2) k}-F_{(4 n-2) k}-2 F_{2 k}}{L_{(4 n+2) k}-L_{(4 n-2) k}}
$$

Using I_{24} and I_{16} (Fibonacci and Lucas Numbers by Hoggatt) successively, the above becomes

$$
\frac{5 F_{2 k} F_{2 n k}^{2}}{L_{(4 n+2) k}-I_{(4 n-2) k}}
$$

Since $L_{(4 n+2) k}-L_{(4 n-2) k}=5 F_{2 k} F_{2 n k} L_{2 n k}$, we are done.
Also solved by Clyde Bridger, Paul Bruckman, Herta Freitag, Bob Prielipp, and the proposer.

