SELF-GENERATING SYSTEMS
RICHARD M. GRASSL
University of New Mexico, Albuquerque, NM 87131
(Submitted September 1980)

Let $S=a_{1}, a_{2}, \ldots$, and $T=b_{1}, b_{2}, \ldots$ be sequences of integers, and let g be an integer. Then $g S$ and $S+T$ denote the sequences $g \alpha_{1}, g \alpha_{2}, \ldots$ and $a_{1}+b_{1}, a_{2}+b_{2}, \ldots$, respectively. Also $\{S\}$ denotes the set $\left\{a_{1}, a_{2}, \ldots\right\}$.

If the a_{n} of S are positive and strictly increasing, the characteristic sequence $\chi S=c_{1}, c_{2}, \ldots$ has $c_{n}=1$ when n is in $\{S\}$ and $c_{n}=0$ otherwise. Also ΔS denotes the sequence d_{1}, d_{2}, \ldots with $d_{n}=a_{n+1}-a_{n}$.

DEFINITION: A system $S_{1}, S_{2}, \ldots, S_{r}$ of sequences of strictly increasing positive integers is self-generating if the sets $\left\{S_{1}\right\},\left\{S_{2}\right\}, \ldots,\left\{S_{r}\right\}$ partition $Z^{+}=\{1,2,3, \ldots\}$ and there is an $r \times r$ matrix $\left(d_{h k}\right)$ with positive integral entries such that

$$
\Delta S_{h}=d_{h 1}\left(\chi S_{1}\right)+d_{h 2}\left(\chi S_{2}\right)+\cdots+d_{h r}\left(\chi S_{r}\right) \quad \text { for } 1 \leqslant h \leqslant r
$$

Hoggatt and Hillman in [2] and [3] used shift functions based on certain linear homogeneous recursions to obtain self-generating systems. In Theorem 5 of Section 7 below, we generalize on their work by increasing the set of recursions for which similar results follow. Examples are given in Section 8.

1. THE RECURSIVE SEQUENCE U

In the following, d and $p_{1}, p_{2}, \ldots, p_{d}$ are fixed integers with $d \geqslant 2$ and $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{d-1} \geqslant p_{d}=1$. Also u_{n} is defined for all integers n by initial conditions

$$
\begin{equation*}
u_{1}=1, u_{0}=u_{-1}=u_{-2}=\cdots=u_{2-d}=0 \tag{1}
\end{equation*}
$$

and the recursion

$$
\begin{equation*}
u_{n+d}=p_{1} u_{n+d-1}+p_{2} u_{n+d-2}+\cdots+p_{d} u_{n} \tag{2}
\end{equation*}
$$

For each integer i, let U_{i} denote the sequence u_{i+1}, u_{i+2}, \ldots and let U_{0} be written as U.

Hoggatt and Hillman obtained self-generating systems using such recursions for the case $d=2$ in [3] and for general d with $p_{1}=p_{2}=\ldots=p_{d}=1$ in [2].

In the representations discussed below, we want U to be an increasing sequence of positive integers with 1 as the first term. This is clearly true when $p_{1}>1$. If $p_{1}=1$, then $u_{1}=u_{2}=1$ and one of these terms must be deleted; this is equivalent to changing the initial conditions (1) to the conditions $u_{h}=2^{h-1}$ for $1 \leqslant h \leqslant d$ of [2]. Since the case $p_{1}=1$ is that of [2], we avoid notational complications by assuming that $p_{1}>1$ in what follows.

The representations introduced next are similar to those of the papers in the special January 1972 issue of this Quarterly as well as those of [2] and [3].

2. CANONICAL REPRESENTATIONS

Let $N=\{0,1,2, \ldots\}$. If $X=x_{1}, x_{2}, \ldots$ and $Y=y_{1}, y_{2}, \ldots$ are sequences of numbers with $x_{n}=0$ for $n>h$, let

$$
X \cdot Y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{h} y_{h}
$$

In this section the only properties of $U=u_{1}, u_{2}, \ldots$ needed are $u_{1}=1$ and the fact that U is an increasing sequence of integers.

With respect to U, we define inductively for each m in N a sequence $E_{m}=$ $e_{m 1}, e_{m 2}, \ldots$ of nonnegative integers as follows. Let all the terms of E_{0} be zero. Assume that E_{h} has been defined for $0 \leqslant h<m$. Since the u_{n} are unbounded and $u_{1}=1 \leqslant m$, there is a largest k such that $u_{k} \leqslant m$. For this k, let $t=m-u_{k}$. Then E_{t} is defined, and we let $e_{m k}=1+e_{t k}$ and $e_{m n}=e_{t n}$ for $n \neq k$. Clearly $E_{m} \cdot U=m$, i.e., we have the representation

$$
\begin{equation*}
m=e_{m 1} u_{1}+e_{m 2} u_{2}+\cdots \tag{3}
\end{equation*}
$$

It is also clear that when $m=u_{k}$ with $k \geqslant 1, e_{m k}=1$ and $e_{m s}=0$ for $s \neq k$.
For $n \geqslant 2$, let q_{n} and r_{n} be the integers (guaranteed by the division algorithm) such that

$$
m-\left(e_{m, n+1} u_{n+1}+e_{m, n+2} u_{n+2}+\cdots\right)=q_{n} u_{n}+r_{n}, \quad 0 \leqslant r_{n}<u_{n}
$$

Then the definition of E_{m} implies that

$$
q_{n}=e_{m n} \quad \text { and } \quad r_{n}=e_{m 1} u_{1}+e_{m 2} u_{2}+\cdots+e_{m, n-1} u_{n-1}
$$

Hence

$$
\begin{equation*}
e_{m 1} u_{1}+e_{m 2} u_{2}+\cdots+e_{m, n-1} u_{n-1}<u_{n} \text { for } n \geqslant 2 \tag{4}
\end{equation*}
$$

We next show that (4) and the fact that each $e_{m h}$ is a nonnegative integer characterize E_{m}.

LEMMA 1: Let $E=e_{1}, e_{2}, \ldots$ and $E^{\prime}=e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be sequences of nonnegative integers with $e_{n}=0=e_{n}^{\prime}$ for n greater than some r. Also let
and

$$
e_{1} u_{1}+e_{2} u_{2}+\cdots+e_{n-1} u_{n-1}<u_{n}
$$

$$
\begin{equation*}
e_{1}^{\prime} u_{1}+e_{2}^{\prime} u_{2}+\cdots+e_{n-1}^{\prime} u_{n-1}<u_{n} \text { for } n \geqslant 2 \tag{5}
\end{equation*}
$$

and $E \cdot U=E^{\prime} \cdot U$. Then $E=E^{\prime}$.
PROOF: Since $e_{n}=0=e_{n}^{\prime}$ for $n>r, E \neq E^{\prime}$ implies that there is a largest n with $e_{n} \neq e_{n}^{\prime}$, and we let t be this n. Without loss of generality, we let $e_{t}<e_{t}^{\prime}$. Upon deletion of the equal terms in $E \cdot U=E^{\prime} \cdot U$, we have

$$
e_{1} u_{1}+\cdots+e_{t} u_{t}=e_{1}^{\prime} u_{1}+\cdots+e_{t}^{\prime} u_{t}
$$

Since $u_{1}=1$, this implies that $t>1$. Then

$$
\begin{aligned}
u_{t} & \leqslant\left(e_{t}^{\prime}-e_{t}\right) u_{t}=e_{t}^{\prime} u_{t}-e_{t} u_{t} \\
& =\left(e_{1} u_{1}+\cdots+e_{t-1} u_{t-1}\right)-\left(e_{1}^{\prime} u_{1}+\cdots+e_{t-1}^{\prime} u_{t-1}\right)
\end{aligned}
$$

Since each $e_{n}^{\prime} \geqslant 0$, this implies that

$$
u_{t} \leqslant e_{1} u_{1}+\cdots+e_{t-1} u_{t-1},
$$

contradicting (5) and proving that $E=E^{\prime}$.
The following definition introduces another characteristic property of the E_{m} which will be needed below.

DEFINITION: A sequence $E=e_{1}, e_{2}, \ldots$ is compatible [with respect to the recursion (2)] if, for any h in Z^{+}and any integer k with $1 \leqslant k \leqslant d$, the sequence of k differences

$$
\begin{equation*}
p_{1}-e_{h+k-1}, p_{2}-e_{h+k-2}, \ldots, p_{k}-e_{h} \tag{6}
\end{equation*}
$$

has the two following properties:
I. If $h=1$ or $k=d$, at least one difference in (6) is nonzero.
II. If some difference in (6) is nonzero, the first nonzero difference is positive.

THEOREM 1: For each m in Z^{+}, E_{m} is compatible. Also if $E=e_{1}, e_{2}, \ldots$ is a compatible sequence with $e_{n}=0$ for n greater than some n_{0} and $E \cdot U=m$ then $E=E_{m}$.

PROOF: We first show that E_{m} is compatible. Let $E=E_{m}$. If $h=1$ or $k=d$ and all the differences in (6) were zero, then it would follow from (1) and (2) that

$$
u_{h+k}=e_{h+k-1} u_{h+k-1}+e_{h+k-2} u_{h+k-2}+\cdots+e_{h} u_{h} .
$$

Since this would contradict (4), we have shown than I holds.
To prove II, we assume it false and seek a contradiction. Then we can assume that in (6) the first nonzero difference is $p_{g}-e_{h+k-g}$ and also that $e_{h+k-g} \geqslant 1+p_{g}$. These assumptions would imply

$$
\sum_{j=h}^{h+k-1} e_{j} u_{j} \geqslant \sum_{j=h+k-g}^{h+k-1} e_{j} u_{j} \geqslant u_{h+k-g}+\sum_{j=1}^{g} p_{j} u_{h+k-j}
$$

Here, if one uses the recursion (2) to replace u_{h+k-g} by $\sum_{j=1}^{d} p_{j} u_{h+k-g-j}$, one
finds, since $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{d}$, that

$$
\begin{aligned}
\sum_{j=h}^{h+k-1} e_{j} u_{j} & \geqslant \sum_{j=1}^{d} p_{j} u_{h+k-g-j}+\sum_{j=1}^{g} p_{j} u_{h+k-j} \\
& \geqslant \sum_{j=g+1}^{d} p_{j} u_{h+k-j}+\sum_{j=1}^{g} p_{j} u_{h+k-j}=u_{h+k}
\end{aligned}
$$

This contradicts (4), and thus II holds, and E_{m} is compatible.
Second, assume that E is compatible, the desired n_{0} exists, and $E \cdot U=m$. It suffices to show that $u_{n}>e_{1} u_{1}+e_{2} u_{2}+\cdots+e_{n-1} u_{n-1}$ for $n \geqslant 2$, since this, the hypothesis $E \cdot U=m$, (4), and Lemma 1 imply that $E=E_{m}$. We prove these inequalities by induction on n. The hypotheses I and II with $h=1=k$ imply that $p_{1}>e_{1}$. Hence, $u_{2}=p_{1}>e_{1}=e_{1} u_{1}$, and the case $n=2$ is true. Assume that $n>2$ and that the desired inequalities are true for $2,3, \ldots$, $n-1$. Using I and $I I$, one finds a k in $\{1,2, \ldots, d\}$ such that

$$
\begin{equation*}
p_{k} \geqslant 1+e_{n-k} \quad \text { and } \quad p_{j}=e_{n-j} \quad \text { for } 1 \leqslant j<k \tag{7}
\end{equation*}
$$

Using the hypothesis of the induction and $n-k<n$, one has

$$
\begin{equation*}
u_{n-k}>\sum_{j=1}^{n-k-1} e_{j} u_{j} \tag{8}
\end{equation*}
$$

Using (2), (7), and (8), one sees that

$$
u_{n}=\sum_{j=1}^{d} p_{j} u_{n-j} \geqslant u_{n-k}+\sum_{j=1}^{k} e_{n-j} u_{n-j}>\sum_{j=1}^{n-k-1} e_{j} u_{j}+\sum_{j=1}^{k} e_{n-j} u_{n-j}=\sum_{j=1}^{n-1} e_{j} u_{j}
$$

This establishes the desired inequality for n and completes the proof of the theorem.

LEMMA 2: Let $k \geqslant 1, w=u_{k}$. Also define the sequence $F=f_{1}, f_{2}, \ldots$ by

$$
f_{1}=p_{r}-1, \text { where } r \in\{1,2, \ldots, d\} \text { and } r \equiv k-1(\bmod d) ;
$$

$$
\begin{aligned}
& f_{n}=0 \text { for } n \geqslant k ; \\
& f_{n}=0 \text { for } n \equiv k(\bmod d) ; \\
& f_{n}=p_{j} \text { when } k-n \equiv j(\bmod d), 1<n<k, \text { and } n \not \equiv k(\bmod d) .
\end{aligned}
$$

Then $E_{w-1}=F$.
PROOF: Obviously F is compatible. Since $p_{d}=1$, repeated use of (2) gives

$$
\begin{equation*}
u_{z}=u_{z-q d}+\sum_{h=0}^{q-1} \sum_{k=1}^{d-1} p_{k} u_{z-h d-k} \text { for } q \in z^{+} . \tag{9}
\end{equation*}
$$

Now let $q \in N, p \in\{1,2, \ldots, d\}$, and $z=q d+r+1$. Then

$$
u_{z-q d}=u_{r+1}=p_{1} u_{r}+p_{2} u_{r-1}+\cdots+p_{r} u_{1}
$$

follows from (2). Hence, (9) can be rewritten as

$$
\begin{equation*}
u_{z}=u_{q d+r+1}=\sum_{h=0}^{q-1} \sum_{k=1}^{d-1} p_{k} u_{z-h d-k}+\sum_{k=1}^{n} p_{k} u_{r+1-k} . \tag{10}
\end{equation*}
$$

Now, $F \cdot U=w-1$ follows from (10), and then Theorem 1 gives us the desired $E_{w-1}=F$.

3. PARTITIONING Z^{+}

Let $m \varepsilon Z^{+}$. Then $e_{m k} \neq 0$ for some k and we define z_{m} as follows: if $e_{m 1}>0, z_{m}=1$, and if $e_{m 1}=0$, then z_{m} is the largest h such that $e_{m s}=0$ for $1 \leqslant s<h$. For $1 \leqslant t \leqslant d$, let $V_{t}=\left\{m: z_{m} \equiv t(\bmod d)\right\}$. Clearly, V_{1}, V_{2}, \ldots, V_{d} form a partitioning of Z^{+}.

4. THE SHIFT FUNCTIONS σ^{i}

Let Z be the set of all integers. Recall that U_{i} denotes the sequence u_{i+1}, u_{i+2}, \ldots. For each i in Z, let σ^{i} be the function from N to Z with

$$
\sigma^{i}(m)=E_{m} \cdot U_{i}=e_{m 1} u_{i+1}+e_{m 2} u_{i+2}+\cdots \text { for all } m \text { in } N
$$

The following properties are easy to verify:
(i) $\sigma^{i}(m)$ satisfies the recursion (2) for fixed m in N and varying i.
(ii) $\sigma^{i}(0)=0$ for all i in 2 .
(iii) $\sigma^{i}\left(u_{k}\right)=u_{k+i}$ for i in Z and k in Z^{+}.
(iv) $\sigma^{i+1}(m)=\sigma\left(\sigma^{i}(m)\right)$ for m and i in N. The proof of this depends on
the fact that the canonical representation of $\sigma^{i}(m)$ is, in fact, E_{m} shifted i times.
(v) $\quad \sigma^{0}(m)=m$ for m in N.

5. DIFFERENCING σ^{i}

For i in Z and m in Z^{+}, let the backward difference $\nabla \sigma^{i}(m)$ be defined by

$$
\nabla \sigma^{i}(m)=\sigma^{i}(m)-\sigma^{i}(m-1)=E_{m} \cdot U_{i}-E_{m-1} \cdot U_{i}
$$

For i in Z and n in Z^{+}, let $D_{i n}=\nabla \sigma^{i}\left(u_{n}\right)$. If $u_{n}=w$, then $E_{w}=e_{1}, e_{2}, \ldots$ with $e_{n}=1$ and $e_{t}=0$ for $t \neq n$ and $E_{w-1}=f_{1}, f_{2}, \ldots, f_{n-1}, 0,0, \ldots$ with the f_{j} as described in Lemma 2. Then

$$
D_{i n}=u_{i+n}-\sum_{j=1}^{n-1} f_{j} u_{i+j}
$$

Let $n \equiv k(\bmod d)$ with k in $\{1,2, \ldots, d\}$. Temporarily, let $i \geqslant 2$. Then, using (10) with $z=i+n$, the formulas of Lemma 2 for the f_{j}, and the recursion (2), one finds that

$$
\begin{equation*}
D_{i n}=u_{i+1} \text { if } k=1 \text {, } \tag{11}
\end{equation*}
$$

and if $k \neq 1$,

$$
\begin{align*}
D_{i n} & =u_{i+1}+p_{k} u_{i}+p_{k+1} u_{i-1}+\cdots+p_{d} u_{i+k-d} \\
& =u_{i+1}+u_{i+k}-p_{1} u_{i+k-1}-\cdots-p_{k-1} u_{i+1} . \tag{12}
\end{align*}
$$

For fixed n and varying i, the $D_{i n}$ satisfy the same recursion (2) as the u 's. Hence, the truth of (11) and (12) for $i \geqslant 2$ implies these formulas for all integers i. In particular, these formulas imply the following lemma.

LEMMA 3: $\quad D_{i n}=D_{i k}$ if $n \equiv k(\bmod d)$.

Next we show that $\nabla \sigma^{i}(m)$ depends only on i and the k such that $m \varepsilon V_{k}$.

THEOREM 2: Let $m \in V_{k}$. Then $\nabla \sigma^{i}(m)=D_{i k}$.
PROOF: Let $E_{m}=e_{1}, e_{2}, \ldots$. Since $m \varepsilon V_{k}$, there is a positive integer z such that $z \equiv k(\bmod d), e_{z}>0$, and $e_{s}=0$ for $1 \leqslant s<z$. Let $w=e_{z}$ and $E_{w-1}=f_{1}, f_{2}, \ldots, f_{z-1}, 0,0, \ldots$. Using Theorem 1 , one finds that

$$
E_{m-1}=f_{1}, f_{2}, \ldots, f_{z-1}, e_{z}-1, e_{z+1}, e_{z+2}, \ldots
$$

and hence,

$$
\nabla \sigma^{i}(m)=E_{m} \cdot U_{i}-E_{m-1} \cdot U_{i}=D_{i z}
$$

Then Lemma 3 implies that $\nabla \sigma^{i}(m)=D_{i k}$ as desired.
The two following results are not needed for the main theorem (Theorem 5 below) but they generalize on work of [2] and [3].

LEMMA 4: For $1 \leqslant i<d, \nabla \sigma^{-i}(m)$ is 1 for m in V_{i+1} and is 0 otherwise. PROOF: Temporarily, let $k \neq 1$. By Theorem 2 and (12), for m in V_{k},

$$
\begin{aligned}
\nabla \sigma^{-i}(m)= & u_{k-i}-p_{1} u_{k-i-1}-\cdots-p_{k-1} u_{-i+1}+u_{-i+1} \\
= & \left(u_{k-i}-p_{1} u_{k-i-1}-\cdots-p_{k-i} u_{0}\right)-p_{k-i+1} u_{-1}-\cdots \\
& -p_{k-1} u_{-i+1}+u_{-i+1}
\end{aligned}
$$

For $k=i+1$, this becomes

$$
\nabla \sigma^{-i}(m)=u_{1}-p_{1} u_{0}-p_{2} u_{-1}-\cdots-p_{i} u_{-i+1}+u_{-i+1}=u_{1}=1,
$$

since

$$
u_{0}=u_{-1}=\cdots=u_{2-d}=0
$$

For $k \neq i+1$, i.e., for m not in $V_{k}, \nabla \sigma^{-i}(m)=0$, since

$$
u_{k-i}=p_{1} u_{k-i-1}+\cdots+p_{k-i} u_{0}
$$

by (1) and (2). The same results are obtained for $k=1$ from (11).

THEOREM 3: Let $|S|$ denote the number of elements in the set S. Then
(i) $\sigma^{-i}(m)=\left|V_{i+1} \cap\{1,2, \ldots, m\}\right|$ for $i=1,2, \ldots, d-1$.
(ii) $m-\sigma^{-1}(m)-\sigma^{-2}(m)-\ldots-\sigma^{-(d-1)}(m)=\left|V_{1} \cap\{1,2, \ldots, m\}\right|$.

PROOF: For (i),

$$
\begin{aligned}
\nabla \sigma^{-i}(1)+\nabla \sigma^{-i}(2)+\cdots+\nabla \sigma^{-i}(m)= & {\left[\sigma^{-i}(1)-\sigma^{-i}(0)\right]+\left[\sigma^{-i}(2)-\sigma^{-i}(1)\right] } \\
& +\cdots+\left[\sigma^{-i}(m)-\sigma^{-i}(m-1)\right] \\
= & \sigma^{-i}(m)-\sigma^{-i}(0)=\sigma^{-i}(m) .
\end{aligned}
$$

For fixed i, by Lemma 4, $\nabla \sigma^{-i}(1)+\cdots+\nabla \sigma^{-i}(m)$ is the number of integers in $V_{i+1} \cap\{1,2, \ldots, m\}$. But the telescoping sum shows this to be $\sigma^{-i}(m)$. Part (ii) follows from (i).

6. A PARTITIONING OF N

For $i=1,2, \ldots, d$ and $j=0,1, \ldots, p_{i}-1$, let $B_{i j}$ be the sequence b_{0}, b_{1}, \ldots with $b_{m}=u_{i+1}+j-p_{i}+\sigma^{i}(m)$. When the dependence of b_{m} on i and j has to be indicated, we will write b_{m} as $b_{i j m}$.

THEOREM 4: The $p_{1}+p_{2}+\cdots+p_{d}$ subsets $\left\{B_{i j}\right\}$ partition N.
PROOF: Let $s \in N$. We need to show that there is a unique ordered triple (i, j, m) such that

$$
\begin{equation*}
s=u_{i+1}+j-p_{i}+\sigma^{i}(m) \tag{13}
\end{equation*}
$$

Let $E_{s}=e_{1}, e_{2}, \ldots$ and for the sought after m, let $E_{m}=f_{1}, f_{2}, \ldots$ i.e., let $e_{s k}=e_{k}$ and $e_{m k}=f_{k}$. With this notation and using (1) and (2), one can rewrite (13) as

$$
s=p_{1} u_{i}+p_{2} u_{i-1}+\cdots+p_{i-1} u_{2}+p_{i} u_{1}+j-p_{i}+f_{1} u_{i+1}+f_{2} u_{i+2}+\cdots
$$

Since $u_{1}=1, p_{i} u_{1}+j-p_{i}=j u_{1}$ and the equation takes the form

$$
\begin{equation*}
s=j u_{1}+p_{i-1} u_{2}+p_{i-2} u_{3}+\cdots+p_{1} u_{i}+f_{1} u_{i+1}+f_{2} u_{i+2}+\cdots \tag{1.4}
\end{equation*}
$$

Using the condition of Theorem 1 that $E_{m}=f_{1}, f_{2}, \ldots$ must be compatible, together with the fact that $j \leqslant p_{i}-1$, one sees that the sequence

$$
S=j, p_{i-1}, p_{i-2}, \ldots, p_{1}, f_{1}, f_{2}, \ldots
$$

must be compatible. Since the right side of (14) is $S \cdot U$, Theorem 1 (with m replaced by s) tells us that (13) is equivalent to $S=E_{s}$.

If there is no i with $2 \leqslant i \leqslant d$ and

$$
\begin{equation*}
\left(p_{1}, p_{2}, \ldots, p_{i-1}\right)=\left(e_{i}, e_{i-1}, \ldots, e_{2}\right) \tag{15}
\end{equation*}
$$

then the sequence e_{2}, e_{3}, \ldots is compatible and $E_{s}=S$ holds if and only if $i=1, j=e_{1}$, and the sequence e_{2}, e_{3}, \ldots is the sequence f_{1}, f_{2}, \ldots.

Now assume that (15) holds for some i in $\{2,3, \ldots, d\}$ but not for any larger integer in this set. We wish to show that the sequence

$$
\begin{equation*}
e_{i+1}, e_{i+2}, \cdots \tag{16}
\end{equation*}
$$

is compatible. Since e_{1}, e_{2}, \ldots is compatible, (16) can fail to be compatible only if there is an integer g with

$$
\begin{equation*}
\left(p_{1}, p_{2}, \ldots, p_{g}\right)=\left(e_{i+g}, e_{i+g-1}, \ldots, e_{i+1}\right) \text { and } i \leqslant g<d \tag{17}
\end{equation*}
$$

Then condition II (of the definition of a compatible sequence) with $h=i$ and
$k=1+g$ would imply that $e_{i} \leqslant p_{g+1}$. If $e_{i}<p_{g+1}$, (15) gives us the contradiction $p_{1}=e_{i}<p_{g+1} \leqslant p_{1}$. Now condition I implies that $g+1<d$. A1so $e_{i}=p_{g+1}$ similarly implies that $p_{1}=p_{2}=\cdots=p_{g+1}$. This, (17), and the equality $p_{1}=e_{i}$ from (15) would give us

$$
\left(p_{1}, p_{2}, \ldots, p_{g+1}\right)=\left(e_{i+g}, e_{i+g-1}, \ldots, e_{i}\right)
$$

As before, condition II with $h=i-1$ and $k=2+g$ implies that $p_{g+2}=p_{1}$, and hence that

$$
\left(p_{1}, p_{2}, \ldots, p_{g+2}\right)=\left(e_{i+g}, e_{i+g-1}, \ldots, e_{i-1}\right)
$$

This process would continue until we had

$$
\left(p_{1}, p_{2}, \ldots, p_{i+g-1}\right)=\left(e_{i+g}, e_{i+g-1}, \ldots, e_{2}\right)
$$

which contradicts the fact that the i in (15) is maximal.
Hence e_{i+1}, e_{i+2}, \ldots satisfies I and II and so is compatible. Then $E_{s}=$ S holds if and only if i is the maximal i for (15), $j=e_{1}$, and

$$
f_{1}, f_{2}, \ldots=e_{i+1}, e_{i+2}, \ldots
$$

This completes the proof.

7. SELF-GENERATING SYSTEM

For $i=1,2, \ldots, d$ and $j=1,2, \ldots, p_{i}$, let $A_{i j}$ be the sequence

$$
a_{i j 1}, a_{i j 2}, \ldots
$$

with $a_{i j m}=1+b_{i, j-1, m-1}$ (the b^{\prime} s are as in Section 6). When both i and j are known from the context, we may write $\alpha_{i j m}$ as α_{m}.

THEOREM 5: The sequences $A_{i j}$ for $1 \leqslant i \leqslant d$ and $1 \leqslant j \leqslant p_{i}$ form a self-generating system.

PROOF: From the definition of the sets $\left\{B_{i, j-1}\right\}$ in Section 6 and V_{k} in Section 3, it follows that

$$
\begin{equation*}
V_{1}=\left\{A_{d 1}\right\} \cup T, \tag{18}
\end{equation*}
$$

where T is the union of the $\left\{A_{i j}\right\}$ for $1 \leqslant i<d$ and $1 \leqslant j<p_{i}$, and that

$$
V_{h+1}=\left\{A_{h, p_{h}}\right\} \text { for } h=1,2, \ldots, d-1
$$

Since the $\left\{B_{i j}\right\}$ form a partition of N (or, equivalently, since the V 's partition $\left.Z^{+}\right)$, the $\left\{A_{i j}\right\}$ partition Z^{+}. Since $b_{i j m}=u_{i+1}+j-p_{i}+\sigma^{i}(m)$,

$$
\begin{aligned}
\nabla b_{i j m}=b_{i, j, m}-b_{i, j, m-1} & =\left(u_{i+1}+j-p_{i}+\sigma^{i}(m)\right)-\left(u_{i+1}+j-p_{i}+\sigma^{i}(m-1)\right) \\
& =\sigma^{i}(m)-\sigma^{i}(m-1)= \\
& =\nabla \sigma^{i}(m) .
\end{aligned}
$$

Then by Theorem 2 we have

$$
\nabla b_{i j m}=\nabla \sigma^{i}(m)=D_{i k} \text { if } m \varepsilon V_{k}
$$

Since $a_{i j m}=1+b_{i, j-1, m-1}, \Delta A_{i j}$ is the sequence d_{1}, d_{2}, \ldots with

$$
d_{m}=a_{i, j, m+1}-a_{i, j, m}=b_{i, j-1, m}-b_{i, j-1, m-1}=D_{i k}
$$

when $m \varepsilon V_{k}$. Since each V_{k} is an $\left\{A_{i j}\right\}$ or a union of $\left\{A_{i j}\right\}$,

$$
\Delta A_{i j}=\sum_{\substack{1 \leqslant h \leqslant d \\ 1 \leqslant k \leqslant p_{h}}} d_{i j h k} X A_{h k}
$$

where $d_{i j h k}=D_{i s}$ when $\left\{A_{h k}\right\}$ is a subset of V_{s}.

8. EXAMPLE

For $d=3$ and $p_{1}=p_{2}=3, p_{3}=1$, we have $u_{n+3}=3 u_{n+2}+3 u_{n+1}+u_{n}$ and $U=1,3,12,46,177, \ldots$. As an illustration of the canonical representation in Section 1 , for $m=136$, we have $E_{m}=2,2,3,2,0,0, \ldots$ and $\sigma(m)=$ $2 u_{2}+2 u_{3}+3 u_{4}+2 u_{5}=522$. The following is a table of the $\sigma^{i}(m)$ for the $i ' s$ involved in Theorem 5.

m	0	1	2	3	4	5	6	7	8	9	10	11	12
$\sigma(m)$	0	3	6	12	15	18	24	27	30	36	39	42	46
$\sigma^{2}(m)$	0	12	24	46	58	70	92	104	116	138	150	162	177
$\sigma^{3}(m)$	0	46	92	177	223	269	354	\ldots					

The $p_{1}+p_{2}+p_{3}=7$ subsets partitioning Z^{+}are:

$$
\begin{aligned}
& \left\{A_{11}\right\}=\{\sigma(m)+1\}=\{1,4,7,13,16,19,25,28,31,37,40, \ldots\} \\
& \left\{A_{12}\right\}=\{\sigma(m)+2\}=\{2,5,8,14,17,20,26,29,32,38,41, \ldots\} \\
& \left\{A_{13}\right\}=\{\sigma(m)+3\}=\{3,6,9,15,18,21,27,30,33,39,42, \ldots\} \\
& \left\{A_{21}\right\}=\left\{\sigma^{2}(m)+10\right\}=\{10,22,34,56,68,80,102, \ldots\} \\
& \left\{A_{22}\right\}=\left\{\sigma^{2}(m)+11\right\}=\{11,23,35,57,69,81,103, \ldots\} \\
& \left\{A_{23}\right\}=\left\{\sigma^{2}(m)+12\right\}=\{12,24,36,58,70,82,104, \ldots\}
\end{aligned}
$$

and

$$
\left\{A_{31}\right\}=\left\{\sigma^{3}(m)+46\right\}=\{46,92,138,223, \ldots\}
$$

The following is a table of $D_{i k}$ for $-2 \leqslant i \leqslant 3$ and $1 \leqslant k \leqslant 3$.

k	-2	-1	0	1	2	3
1	0	0	1	3	12	46
2	0	1	1	6	22	85
3	1	0	1	4	15	58

Since $V_{1}=A_{11} \cup A_{12} \cup A_{21} \cup A_{22} \cup A_{31}, V_{2}=A_{13}$, and $V_{3}=A_{23}$, we have

$$
\begin{aligned}
\Delta A_{1 j}=D_{11}\left(X A_{11}\right) & +D_{11}\left(X A_{12}\right)+D_{12}\left(X A_{13}\right)+D_{11}\left(X A_{21}\right) \\
& +D_{11}\left(X A_{22}\right)+D_{13}\left(X A_{23}\right)+D_{11}\left(X A_{31}\right) \\
\Delta A_{2 j}=D_{21}\left(X A_{11}\right) & +D_{21}\left(X A_{12}\right)+D_{22}\left(X A_{13}\right)+D_{21}\left(X A_{21}\right) \\
& +D_{21}\left(X A_{22}\right)+D_{23}\left(X A_{23}\right)+D_{21}\left(X A_{31}\right) \\
\Delta A_{3 j}=D_{31}\left(X A_{11}\right) & +D_{31}\left(X A_{12}\right)+D_{32}\left(X A_{13}\right)+D_{31}\left(X A_{21}\right) \\
& +D_{31}\left(X A_{22}\right)+D_{33}\left(X A_{23}\right)+D_{31}\left(X A_{31}\right)
\end{aligned}
$$

and the 7×7 matrix $\left(d_{h k}\right)$ for the self-generating system $A_{11}, A_{12}, A_{13}, A_{21}$, A_{22}, A_{23}, A_{31} is

$$
\left(\begin{array}{rrrrrrr}
3 & 3 & 6 & 3 & 3 & 4 & 3 \\
3 & 3 & 6 & 3 & 3 & 4 & 3 \\
3 & 3 & 6 & 3 & 3 & 4 & 3 \\
12 & 12 & 22 & 12 & 12 & 15 & 12 \\
12 & 12 & 22 & 12 & 12 & 15 & 12 \\
12 & 12 & 22 & 12 & 12 & 15 & 12 \\
46 & 46 & 85 & 46 & 46 & 58 & 46
\end{array}\right)
$$

As an illustration of Theorem 3(i), with $i=1$ and $m=20$,

$$
\begin{aligned}
& \sigma^{-1}(20)=\sigma^{2}(20)-3 \sigma(20)-3 \sigma^{0}(20) \\
= & 2 u_{3}+2 u_{4}+u_{5}-3\left(2 u_{2}+2 u_{3}+u_{4}\right)-60 \\
= & 5=\left|V_{2} \cap\{1,2, \ldots, 20\}\right|
\end{aligned}
$$

where $V_{2}=\left\{n: z_{n} \equiv 2(\bmod 3)\right\}=\{3,6,9,15,18\}$ since the only sequences E_{n}, with $n \leqslant 20$ and $z_{n} \equiv 2(\bmod 3)$ are:

$$
\begin{aligned}
E_{3} & =0,1,0,0, \ldots \\
E_{6} & =0,2,0,0, \ldots \\
E_{9} & =0,3,0,0, \ldots \\
E_{15} & =0,1,1,0, \ldots \\
E_{18} & =0,2,1,0, \ldots
\end{aligned}
$$

REFERENCES

1. L. Carlitz, Richard Scoville, \& V. E. Hoggatt, Jr. "Fibonacci Representations." The Fibonacci Quarterly 10, No. 1 (1972):29-42.
2. V. E. Hoggatt, Jr., \& A. P. Hillman. "Nearly Linear Functions." The Fibonacci Quarterly 17, No. 1 (1979):84-89.
3. V. E. Hoggatt, Jr., \& A. P. Hillman. "Recursive, Spectral, and Self-Generating Sequences." The Fibonacci Quarterly 18, No. 2 (1980):97-103.
4. See the special issue of The Fibonacci Quarterly (Vol. 10, No. 1 [1972]) on Representations.
