SEQUENCE TRANSFORMS RELATED TO REPRESENTATIONS USING GENERALIZED FIBONACCI NUMBERS

V. E. HOGGATT, JR. (Deceased)
and
MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, CA 95192

1. INTRODUCTION

We make use of the sequences $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$, where $\left(a_{n}, b_{n}\right)$ are safe-pairs in Wythoff's game, described by Ball [1], and, more recently, by Horadam [2], Silber [3], and Hoggatt \& Hillman [4] to develop properties of sequences whose subscripts are given by a_{n} and b_{n}.

Let $U=\left\{u_{i}\right\}_{i=1}^{\infty}$. We define A and B transforms by

$$
\begin{align*}
& A U=\left\{u_{a_{i}}\right\}_{i=1}^{\infty}=\left\{u_{1}, u_{3}, u_{4}, u_{6}, \ldots, u_{a_{i}}, \ldots\right\}, \\
& B U=\left\{u_{b_{i}}\right\}_{i=1}^{\infty}=\left\{u_{2}, u_{5}, u_{7}, \ldots, u_{b_{i}}, \ldots\right\} . \tag{1.1}
\end{align*}
$$

Notice that, for $N=\left\{n_{i}\right\}, n_{i}=i$, the set of natural numbers, we have

$$
\begin{aligned}
& A N=\left\{n_{\alpha_{i}}\right\}=\left\{\alpha_{i}\right\}=A, \\
& B N=\left\{n_{b_{i}}\right\}=\left\{b_{i}\right\}=B .
\end{aligned}
$$

Next, we list the first fifteen Wythoff pairs, and some of their properties which will be needed.

$$
\begin{array}{rrrrrrrrrrrrrrrr}
n: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
a_{n}: & 1 & 3 & 4 & 6 & 8 & 9 & 11 & 12 & 14 & 16 & 17 & 19 & 21 & 22 & 24 \\
b_{n}: & 2 & 5 & 7 & 10 & 13 & 15 & 18 & 20 & 23 & 26 & 28 & 31 & 34 & 36 & 39
\end{array}
$$

Notice that we begin with $\alpha_{1}=1$, and α_{k} is always the smallest integer not yet used. We find $b_{n}=a_{n}+n$. We list the following properties:

$$
\begin{align*}
a_{k}+k & =b_{k} \tag{1.2}\\
a_{n}+b_{n} & =a_{b_{n}} \tag{1.3}\\
a_{a_{n}}+1 & =b_{n} \tag{1.4}\\
a_{k+1}-a_{k} & = \begin{cases}2, & k=a_{n} \\
1, & k=b_{n}\end{cases} \tag{1.5}
\end{align*}
$$

$$
b_{k+1}-b_{k}= \begin{cases}3, & k=a_{n} \tag{1.6}\\ 2, & k=b_{n}\end{cases}
$$

Further, $\left(\alpha_{n}, b_{n}\right)$ are related to the Fibonacci numbers in several ways, one being that, if $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$, then A and B are the sets of positive integers for which the smallest Fibonacci number used in the unique Zeckendorf representation occurred respectively with an even or odd subscript [6].

2. A AND B TRANSFORMS OF A SPECIAL SET U (FIBONACCI CASE)

Let $U=\left\{u_{i}\right\}$, where

$$
u_{m+1}-u_{m}= \begin{cases}p, & \text { if } m=a_{k} \tag{2.1}\\ q, & \text { if } m=b_{k}\end{cases}
$$

Actually, we can write an explicit formula for u_{m} in terms of u_{1}, p, and q, as in the following theorem.

```
THEOREM 2.1: \(\quad u_{m}=\left(2 m-1-\alpha_{m}\right) q+\left(\alpha_{m}-m\right) p+u_{1}\).
PROOF: \(\quad u_{m}=\left(u_{m}-u_{m-1}\right)+\left(u_{m-1}-u_{m-2}\right)+\left(u_{m-2}-u_{m-3}\right)+\cdots\)
        \(+\left(u_{3}-u_{2}\right)+\left(u_{2}-u_{1}\right)+u_{1}\)
    \(=\) (no. of \(b_{j}\) 's less than \(m\) ) \(q+\) (no. of \(a_{j}\) 's less than \(m\) ) \(p+u_{1}\)
    \(=\left(2 m-1-\alpha_{m}\right) q+\left(\alpha_{m}-m\right) p+u_{1}\)
```

by the following lemma.

LEMMA 1: The number of b_{j} 's less than n is ($2 n-1-a_{n}$), and the number of a_{j} 's less than n is $\left(a_{n}-n\right)$.

PROOF:

$a_{n}:$	1	3	4	6	8	9
$n:$	1	2	3	4	5	6
$a_{n}-n:$	0	1	1	2	3	3
a_{n} 's less than $n:$	0	1	1	2	3	3

Notice that the lemma holds for $n=1,2, \ldots, 6$. Assume that the number of α_{j} 's less than k is given by $\alpha_{k}-k$. Then the number of α_{j} 's less than ($k+$ 1) has to be either $\left(\alpha_{k}-k\right)$ or $\left(a_{k}-k\right)+1$. If $k=b_{i}$, then

$$
\alpha_{k+1}-(k+1)=a_{k}+1-(k+1)=a_{k}-k
$$

by (1.5), while if $k=\alpha_{i}$, then

$$
a_{k+1}-(k+1)=a_{k}+2-(k+1)=a_{k}-k+1,
$$

giving the required result for $a_{k+1}-(k+1)$. Thus, by mathematical induction, the number of a_{j} 's less than n is given by $a_{n}-n$. But, the number of integers less than n is made up of the sum of the number of α_{j} 's less than n and the number of b_{j} 's less than n, since A and B are disjoint and cover the natural numbers. Thus,

$$
n-1=\left(a_{n}-n\right)+\text { (number of } b_{j} \text { 's less than } n \text {), }
$$

so that the number of b_{j} 's less than n becomes ($2 n-1-\alpha_{n}$).
We return to our sequence U and consider the A and B transforms. In particular, what are the differences of successive terms in the transformed sequences $A U$ and $B U$?

For $A U$,

$$
u_{a_{m+1}}-u_{a_{m}}=\left\{\begin{align*}
q+p, & \text { if } m=a_{k} \tag{2.2}\\
p, & \text { if } m=b_{k}
\end{align*}\right.
$$

Equation (2.2) is easy to establish by (1.5), since when $m=\alpha_{k}, \alpha_{m+1}=\alpha_{m}+2$, so that

$$
u_{a_{m+1}}-u_{a_{m}}=\left(u_{a_{m}+2}-u_{a_{m}+1}\right)+\left(u_{a_{m}+1}-u_{a_{m}}\right)=\left(u_{b_{i}+1}-u_{b_{i}}\right)+p=q+p,
$$

where we write $a_{m}+1=b_{i}$, because $a_{m}+1 \neq \alpha_{k}$ and A and B are disjoint and cover the natural numbers. For the second half of (2.2), since $\alpha_{m+1}=a_{m}+1$ by (1.5), we can apply (2.1) immediately.

For $B U$,

$$
u_{b_{m+1}}-u_{b_{m}}= \begin{cases}2 p+q, & \text { if } m=a_{k} \tag{2.3}\\ p+q, & \text { if } m=b_{k}\end{cases}
$$

We can establish (2.3) easily by (1.6), since when $m=\alpha_{k}, b_{m+1}=b_{m}+3$, and $b_{m}+2=a_{i}, b_{m}+1=a_{j}$ for some i and j, so we can write

$$
\begin{aligned}
u_{b_{m+1}}-u_{b_{m}} & =\left(u_{b_{m}+3}-u_{b_{m}+2}\right)+\left(u_{b_{m}+2}-u_{b_{m}+1}\right)+\left(u_{b_{m}+1}-u_{b_{m}}\right) \\
& =\left(u_{a_{i}+1}-u_{a_{i}}\right)+\left(u_{a_{j}+1}-u_{a_{j}}\right)+\left(u_{b_{m}+1}-u_{b_{m}}\right) \\
& =p+p+q=2 p+q .
\end{aligned}
$$

For the case $m=b_{k}, b_{m+1}=b_{m}+2$ and $b_{m}+1=\alpha_{i}$ for some i, causing

$$
\begin{aligned}
u_{b_{m+1}}-u_{b_{m}} & =\left(u_{b_{m}+2}-u_{b_{m}+1}\right)+\left(u_{b_{m}+1}-u_{b_{m}}\right) \\
& =\left(u_{a_{i}+1}-u_{a_{i}}\right)+\left(u_{b_{m}+1}-u_{b_{m}}\right) \\
& =p+q .
\end{aligned}
$$

Notice that we have put one b_{i} subscript on $B U$ and one α_{i} subscript on $A U$. Now if we applied B twice, $B B U=\left\{u_{b_{b_{i}}}\right\}$ would have two successive b-subscripts, and we could record how many b-subscripts occurred by how many times we applied the B transform. Thus, a sequence of A and B transforms gives us a sequence of successive α - and b-subscripts. Further, we can easily handle this by matrix multiplication. Let the finally transformed sequence be denoted by $U^{*}=u_{(a b)_{i}}^{*}$ and define the difference of successive elements by

$$
u_{(a b)_{i+1}}^{*}-u_{(a b)_{i}}^{*}= \begin{cases}p^{\prime}, & \text { if } i=a_{k} \\ q^{\prime}, & \text { if } i=b_{k}\end{cases}
$$

and define the matrix $Q=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Then $A U$ has $p^{\prime}=p+q, q^{\prime}=p$, and

$$
Q\binom{p}{q}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{p}{q}=\binom{p+q}{p}=\binom{p^{\prime}}{q^{\prime}}
$$

and $B U$ has $p^{\prime}=2 p+q, q^{\prime}=p+q$, and

$$
Q^{2}\binom{p}{q}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{p}{q}=\binom{2 p+q}{p+q}=\binom{p^{\prime}}{q^{\prime}}
$$

Now, the Q-matrix has the well-known and easily established formula

$$
Q^{n}=\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

for the Fibonacci numbers $F_{1}=F_{2}=1, F_{n+2}=F_{n+1}+F_{n}$.
Suppose we do a sequence of A and B transforms,

$$
A A B A A A U=A^{2} B^{1} A^{3} U
$$

Then the difference of successive terms, p^{\prime} and q^{\prime}, are given by

$$
Q^{7}\binom{p}{q}=\left(\begin{array}{ll}
F_{8} & F_{7} \\
F_{7} & F_{6}
\end{array}\right)\binom{p}{q}=\binom{F_{8} p+F_{7} q}{F_{7} p+F_{6} q}=\binom{p^{\prime}}{q^{\prime}} .
$$

Note that each A transform contributes Q^{1} but a B transform contributes Q^{2} to the product. Also, the sequence considered has successively 3 -subscripts, one b-subscript, and $2 a$-subscripts, so that $u_{(a b)_{i}}^{*}$ has six subscripted subscripts, or,

$$
u_{(a b)_{i}}^{*}=u_{a_{a_{b_{b_{a_{i}}}}}}
$$

Also notice that the order of the A and B transforms does not matter. Thus, if U^{*} is formed after $m A$ transforms and $n B$ transforms in any order, then the matrix multiplier is $Q^{m+2 n}$, and

$$
p^{\prime}=F_{m+2 n+1} p+F_{m+2 n} q, \quad q^{\prime}=F_{m+2 n} p+F_{m+2 n-1} q .
$$

Comments on A and B Transforms

Let W be the weight of the sequence of A and B transforms, where each B is weighted 2 and each A weighted 1 . Thus, the number of different sequences with weight W is the number of compositions of W using 1 's and 2 's, so that the number of distinct sequences of A and B transforms of weight W is F_{W+1}. Thus, u_{1} in Theorem 2.1 can be any number $1,2, \ldots, F_{W+1}$ for sequences of A and B transforms of weight W.

$$
\text { 3. } A, B \text {, AND } C \text { TRANSFORMS (TRIBONACCI CASE) }
$$

The Tribonacci numbers T_{n} are

$$
T_{0}=0, T_{1}=1, T_{2}=1, T_{n+3}=T_{n+2}+T_{n+1}+T_{n}, \quad n \geqslant 0
$$

Divide the positive integers into three disjoint subsets $A=\left\{A_{k}\right\}, B=\left\{B_{k}\right\}$, and $C=\left\{C_{k}\right\}$ by examining the smallest term T_{k} used in the unique Zeckendorf representation in terms of Tribonacci numbers. Let $n \varepsilon A$ if $k \equiv 2 \bmod 3$, $n \varepsilon B$ if $k \equiv 3 \bmod 3$, and $n \varepsilon C$ if $k \equiv 1 \bmod 3$. The numbers A_{n}, B_{n}, and C_{n} were considered in [6]. We list the first few values.

TABLE 3.1

n	A_{n}	B_{n}	C_{n}
1	1	2	4
2	3	6	11
3	5	9	17
4	7	13	24
5	8	15	28
6	10	19	35
7	12	22	41
8	14	26	48
9	16	30	55
10	18	33	61

Notice that we begin with $A_{1}=1$ and A_{k} is the smallest integer not yet used in building the array. Some basic properties are:

$$
\begin{align*}
& A_{n}+B_{n}+n=C_{n} \tag{3.1}\\
& A_{A_{n}}+1=B_{n}, \quad A_{B_{n}}+1=C_{n} \tag{3.2}\\
& A_{n+1}-A_{n}=\left\{\begin{array}{llll}
2, & n \varepsilon A \\
2, & n & \varepsilon & B \\
1, & n & \varepsilon C
\end{array}\right. \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& B_{n+1}-B_{n}= \begin{cases}4, & n \varepsilon A \\
3, & n \varepsilon B \\
2, & n \varepsilon C\end{cases} \tag{3.4}\\
& C_{n+1}-C_{n}= \begin{cases}7, & n \varepsilon A \\
6, & n \varepsilon B \\
4, & n \varepsilon C\end{cases} \tag{3.5}
\end{align*}
$$

Let the special sequence $U=\left\{u_{i}\right\}$, where

$$
u_{m+1}-y_{m}= \begin{cases}p, & m \in A \tag{3.6}\\ q, & m \in B \\ r, & m \in C\end{cases}
$$

We can write an explicit formula for u_{m} in terms of u_{1}, p, q, and r.

$$
\begin{aligned}
& \text { THEOREM 3.1: } u_{m}=\left(2 m-1-A_{m}\right) r+\left(2 A_{m}-B_{m}\right) q+\left(B_{m}-A_{m}-m\right) p+u_{1} . \\
& \text { PROOF: } u_{m}=\left(u_{m}-u_{m-1}\right)+\left(u_{m-1}-u_{m-2}\right)+\cdots+\left(u_{3}-u_{2}\right)+\left(u_{2}-u_{1}\right)+u_{1} \\
&=\text { (no. of } \left.C_{j} \text { 's less than } m\right) r+(\text { no. of } B \text { 's less than } m) q \\
&\left.+ \text { (no. of } A_{j} \text { 's less than } m\right) p+u_{1} .
\end{aligned}
$$

But, Theorem 4.5 of [6] gives $\left(2 m-1-A_{m}\right)$ as the number of C_{j} 's less than m, ($2 A_{m}-B_{m}$) as the number of B_{j} 's less than m, and ($B_{m}-A_{m}-m$) as the number of A_{j} 's less than m, establishing Theorem 3.1.

We now return to our special sequence U of (3.6) and consider A, B, and C transforms as in Section 2. For $A U$,

$$
u_{A_{m+1}}-u_{A_{m}}=\left\{\begin{align*}
p+q, & m \in A \tag{3.7}\\
p+r, & m \in B \\
p, & m \in C
\end{align*}\right.
$$

To establisḩ (3.7), recall (3.3). If $m \varepsilon A$, then

$$
\begin{aligned}
u_{A_{m+1}}-u_{A_{m}} & =u_{A_{m}+2}-u_{A_{m}+1}+u_{A_{m}+1}-u_{A_{m}} \\
& =u_{B_{n}+1}-u_{B_{n}}+u_{A_{m}+1}-u_{A_{m}} \\
& =q+p .
\end{aligned}
$$

If $m \varepsilon B$,

$$
\begin{aligned}
u_{A_{m+1}}-u_{A_{m}} & =u_{A_{m}+2}-u_{A_{m}+1}+u_{A_{m}+1}-u_{A_{m}} \\
& =u_{C_{n}+1}-u_{C_{n}}+u_{A_{m}+1}-u_{A_{m}} \\
& =r+p .
\end{aligned}
$$

If $m \in C$,

$$
u_{A_{m+1}}-u_{A_{m}}=u_{A_{m}+1}-u_{A_{m}}=p
$$

Now, matrix T,

$$
T=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

can be used to write $A U$, since

$$
T \cdot\left(\begin{array}{l}
p \tag{3.8}\\
q \\
p
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{c}
p+q \\
p+p \\
p
\end{array}\right)
$$

Notice that the characteristic polynomial of T is $x^{3}-x^{2}-x-1=0$, while the characteristic polynomial of Q of Section 2 is $x^{2}-x-1=0$.

In an entirely similar manner, for $B U$ one can establish

$$
u_{B_{m+1}}-u_{B_{m}}=\left\{\begin{align*}
2 p+q+r, & m \in A \tag{3.9}\\
2 p+q, & m \varepsilon B \\
p+q, & m \in C
\end{align*}\right.
$$

and for $C U$,

$$
u_{C_{m+1}}-u_{C_{m}}=\left\{\begin{array}{cc}
4 p+2 q+r, & m \in A \tag{3.10}\\
3 p+2 q+r, & m \varepsilon B \\
2 p+q+r, & m \in C
\end{array}\right.
$$

We compute $B U$ as

$$
T^{2} \cdot\left(\begin{array}{c}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{c}
2 p+q+p \\
2 p+q \\
p+q
\end{array}\right)
$$

and $C U$ as

$$
T^{3} \cdot\left(\begin{array}{l}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{lll}
4 & 2 & 1 \\
3 & 2 & 1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{c}
4 p+2 q+r \\
3 p+2 q+p \\
2 p+q+p
\end{array}\right)
$$

We note that

$$
T^{n}=\left(\begin{array}{ccc}
T_{n+1} & T_{n} & T_{n-1} \tag{3.11}\\
T_{n}+T_{n-1} & T_{n-1}+T_{n-2} & T_{n-2}+T_{n-3} \\
T_{n} & T_{n-1} & T_{n-2}
\end{array}\right)
$$

which could be proved by mathematical induction.

We may now apply A, B, and C transforms in sequences. If we assign 1 as weight for $A, 2$ as weight for B, and 3 as weight for C, then there are T_{n+1} sequences of A, B, and C of weight n corresponding to the compositions of n in terms of 1 's, 2 's, and $3^{\prime} s$. Since any positive integer in sequence A_{n}, B_{n}, or C_{n} can be brought to u_{1} by a unique sequence of A, B, or C transforms, there is a unique correspondence between the positive integers and the compositions of n in terms of 1 's, 2 's, and 3 's.

$$
\text { 4. } A, B \text {, AND } C \text { TRANSFORMS OF THE SECOND KIND }
$$

We now consider the sequence defined by

$$
U_{1}=1, U_{2}=2, U_{3}=3, U_{n+3}=U_{n+2}+U_{n}
$$

with characteristic polynomial $x^{3}-x-1=0$. We define $A=\left\{A_{n}\right\}, B=\left\{B_{n}\right\}$, $C=\left\{C_{n}\right\}$, and let $H=\left\{H_{n}\right\}$ be the complement of $B=A \cup C$, where A, B, and C are disjoint and cover the set of positive integers, as follows:

$$
\begin{align*}
& A_{n}=\text { smallest positive integer not yet used } \\
& B_{n}=A_{n}+n \tag{4.1}\\
& C_{n}=B_{n}+H_{n}=A_{n}+B_{n}-\text { (number of } C_{j}^{\prime} \text { 's less than } A_{n} \text {) }
\end{align*}
$$

This array has many interesting properties [6], [8], but here the main theme is the representations in terms of the sequence U_{n} above. We list the first terms in the array for n, A, B, C, and H in the following table.

TABLE 4.1

n	A_{n}	B_{n}	H_{n}	C_{n}
1	1	2	1	3
2	4	6	3	9
3	5	8	4	12
4	7	11	5	16
5	10	15	7	22
6	13	19	9	28

Here we can also obtain sets A, B, and C by examining the smallest term U_{k} used in the unique Zeckendorf representation of an integer N in terms of the sequence U_{k}. We let $N \in A$ if $k \equiv 1 \bmod 3, N \in B$ if $k \equiv 2 \bmod 3$, and $N \in C$ if $k \equiv 3 \bmod 3$.

From Theorem 7.4 of [6], we have:

$$
A_{n+1}-A_{n}= \begin{cases}3, & n=A_{k} \tag{4.2}\\ 1, & n=B_{k} \\ 2, & n=C_{k}\end{cases}
$$

$$
\begin{align*}
& B_{n+1}-B_{n}= \begin{cases}4, & n=A_{k} \\
2, & n=B_{k} \\
3, & n=C_{k}\end{cases} \tag{4.3}\\
& C_{n+1}-C_{n}= \begin{cases}6, & n=A_{k} \\
3, & n=B_{k} \\
4, & n=C_{k}\end{cases} \tag{4.4}
\end{align*}
$$

Let the special sequence $U=\left\{u_{i}\right\}$, where

$$
u_{m+1} \cdots u_{m}= \begin{cases}p, & m \varepsilon A \tag{4.5}\\ q, & m \varepsilon B \\ r, & m \varepsilon C\end{cases}
$$

We can now write an explicit formula for u_{m} in terms of u_{1}, p, q, and r.

$$
\begin{aligned}
& \text { THEOREM 4.1: } u_{m}=\left(C_{m}-B_{m}-m\right) p+\left(C_{m}-2 A_{m}-1\right) q+\left(3 B_{m}-2 C_{m}\right) r+u_{1} \\
& \text { PROOF: } u_{m}=\left(u_{m}-u_{m-1}\right)+\left(u_{m-1}-u_{m-2}\right)+\cdots+\left(u_{3}-u_{2}\right)+\left(u_{2}-u_{1}\right)+u_{1} \\
&=\text { (no. of } \left.A_{j} \text { 's less than } m\right) p+\left(\text { no. of } B_{j} \text { 's less than } m\right) q \\
&\left.+ \text { (no. of } C_{j} \text { 's less than } m\right) r+u_{1} .
\end{aligned}
$$

Corollary 7.4.1 of [6] gives the number of $A_{j}{ }^{\prime}$ s less than m as $C_{m}-B_{m}-m$, the number of B_{j} 's less than m as $C_{m}-2 A_{m}-1$, and the number of C_{j} 's less than m as $3 B_{m}-2 C_{m}$. Each of these is zero for $m=1$.

We again return to our special sequence U of (4.5) and consider A, B, and C transforms as in Section 2. We write the matrix Q^{*} and consider the $A U$, $B U$, and $C U$ transforms:

$$
Q^{*}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

For $A U$, we have

$$
Q *^{2} V=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{c}
p+q+r \\
p \\
p+q
\end{array}\right)
$$

and

$$
u_{A_{m+1}}-u_{A_{m}}=\left\{\begin{align*}
p+q+r, & m \in A \tag{4.6}\\
p, & m \& B \\
p+q, & m \varepsilon C
\end{align*}\right.
$$

For $B U$, we write the matrix multiplication $Q^{* 3} V$,

$$
Q^{* 3} V=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
p
\end{array}\right)=\left(\begin{array}{c}
2 p+q+r \\
p+q \\
p+q+r
\end{array}\right)
$$

and

$$
u_{B_{m+1}}-u_{B_{m}}=\left\{\begin{align*}
2 p+q+r, & m \in A ; \tag{4.7}\\
p+q, & m \in B ; \\
p+q+r, & m \in C .
\end{align*}\right.
$$

For $C U$, we write $Q^{* 4} V$,

$$
Q^{* 4} V=\left(\begin{array}{lll}
3 & 2 & 1 \\
1 & 1 & 1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
3 p+2 q+r \\
p+q+r \\
2 p+q+r
\end{array}\right)
$$

and

$$
u_{C_{m+1}}-u_{C_{m}}=\left\{\begin{align*}
3 p+2 q+r, & m \in A ; \tag{4.8}\\
p+q+r, & m \in B ; \\
2 p+q+r, & m \in C .
\end{align*}\right.
$$

Here, as a bonus, we can work with the transformation $H U$ by using the matrix Q^{*} itself. Since $A \cup B \cup C=N$, using H and B transforms corresponds to the number of compositions of n using 1 's and 3 's, which is given in terms of the sequence U_{n}, defined at the beginning of this section by U_{n-1}.

REFERENCES

1. W. W. Rouse Ball. Mathematical Recreations and Essays (revised by H. S. M. Coxeter), pp. 36-40. New York: Macmillan, 1962.
2. A. F. Horadam. "Wythoff Pairs." The Fibonacci Quarterly 16, No. 2 (April 1978):147-151.
3. R. Silber. "A Fibonacci Property of Wythoff Pairs." The Fibonacci Quarterly 14, No. 4 (Nov. 1976):380-384.
4. V. E. Hoggatt, Jr., \& A. P. Hillman. "A Property of Wythoff Pairs." The Fibonacci Quarterly 16, No. 5 (Oct. 1978):472.
5. V. E. Hoggatt, Jr., \& Marjorie Bicknell-Johnson. "A Generalization of Wythoff's Game." The Fibonacci Quarterly 17, No. 3 (Oct. 1979):198-211.
6. V. E. Hoggatt, Jr., \& Marjorie Bickne11-Johnson. "Lexicographic Ordering and Fibonacci Representations." The Fibonacci Quarterly 20, No. 3 (Aug. 1982): 193-218.
7. V. E. Hoggatt, Jr., \& A. P. Hillman. "Nearly Linear Functions." The Fibonacci Quarterly 17, No. 1 (Feb. 1979):84-89.
8. V. E. Hoggatt, Jr., \& Marjorie Bickne11-Johnson. "A Class of Equivalent Schemes for Generating Arrays of Numbers." The Fibonacci Quarterly, to appear.
