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The main theorem about representations of positive integers as sums of 
Fibonacci numbers, widely known as Zeckendorf*s Theorem even before it 
was published [8] 5 states that every positive integer is a sum of noncon-
secutive Fibonacci numbers and that this representation is unique. Ex-
amples of such sums follow: 

11 = 3'+ 8, 12 = 1 + 3 + 8, 13 = 13, 70 = 2 + 13 + 55. 

Zeckendorffs Theorem implies that the sums of distinct Fibonacci numbers 
form the sequence of all positive integers. It is the purpose of this 
note to prove that the sums of distinct terms of the truncated Fibonacci 
sequence (2, 3, 5, 8, . .*) form the sequence 

[(1 + VE)n/2] - 1, n = 2, 3, 4, ... . 

We shall use the usual notation for Fibonacci numbers, the greatest 
integer function, and fractional parts: 

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn for n = 1, 2, 3, ...; 

[x] = the greatest integer < x; and 

{x} = x - [x]. 

A well-known connection between the number a = (1 4- v5)/2 and Fn , to be 
used in the sequel, is that [aFn] = Fn+1 if n is odd and = Fn+1 - 1 if n 
is even. 

Lemma 1 

Let n and a be positive integers satisfying n ̂  2 and K o^ Fn . Let 
S = {ac} + {aFn}. Then S < 1 for odd w and 5 > 1 for even n. 

Proof: It is well known (e.g. [6, p. 101]) that 

1 
£ n + 2^n+ h 

< a -
F 
£n + 2 
Fn+: 

< 
Fn + 2Fn + 3 

Shifting the index and multiplying by Fn gives 

^i/^n+l^n + 3 < ^ n } < K 'Fn + lFn + 2 f o ^ o d d "• (1) 

1983] 53 



ONE-FREE ZECKENDORF SUMS 

and 

1 " VF„ + A + 2 < {a*"*} < 1 " FjFn + 1Fn + z for even n. (2) 

Now Fn/Fn_1 i s a best approximation of a, which means that 

l ^ n - l " Fn I ^ \ae " d l ( 3 ) 

for all integers d and e satisfying 0 < e ^ F^. 

Case 1. Suppose n i s odd. Then (3) with d = [one + 1] implies 

Fn - oFn_1 < [otc + 1] - ac9 

so that 1 - {aFn_1} < 1 - {ac}5 or equivalently, {ao} < {aFn_1}. Thus 

S < {otF^.J + {aFn} 

< 1 - Fn_jFnFn + 2 + FjFn + 1Fn + 2 by (1) and (2) 

1 - l/FnFn + 1Fn + 2 

< 1. 

Case 2. Suppose n is even. Then (3) implies {aFn_1} < 1 - {aa}, so 
that 

5 > 1 - {aF^-J 4- {aFn} 

> l " Fn_1/FnFn + 1 + 1 - Fn /Fn + 1Fn + 2 

- 2 ~ Fn + 1 /Fn Fn + 2 

> 1. 

Lemma 2 

Let n and o be posi t ive integers satisfying n^ 2 and K e < F n . Then 

[(a + I) (a + Fn) - 1] = [(a + l)c - 1] + Fn + 2 . 

Proof: If n i s odd and > 3, then 

[(a + l)(c + Fn)] = [(a + Do] + [(a + l)Fn] by Lemma 1 

= [(a + Do] + Fn + [ a F j 

= [(a + l )c] + Fn + F n + 1 

= [(a + l )e] + Fn+2. 
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If n is even, then 

[(a + l)(e + Fn)] = [(a + l)o] + [(a + l)Fn] + 1 

= [(a + l)o] + Fn + [aFn] + 1 

= [(a + l)c] + Fn + Fn + 1 

= [(a + l)o] + Fn + 2. 

Lemma 3 

If M is a positive integer whose Zeckendorf sum uses 1, then there 
exists a positive integer C such that M = [ (a 4- 1)C - 1]. Explicitly, if 

M = 1 + Fn + Fni + • • • + FHk where 4 < ni < ni + 2 - 1, (4) 

^ = 1 , Z , e e s , K ~" Z , 

then 

Proof: As a first step, 1 = [a]. Now, suppose M > 1 has Zeckendorf 
sum (4) and, as an induction hypothesis, that if m is any positive inte-
ger < M9 then, in terms of its Zeckendorf sum 

m = 1 + Fu±+ FUi+ ••- + FUv, 

we have m = [ (ot + l)c - 1], where 

* = l +F
Ul-2 + Fu2-2 + • • • + ^ - 2 -

L e t ^ = 1 + \ - 2 + V * + • • • + ^ . , - 2 - T h e n 

n k - i ~ 2 

X-^ J "*_! nk - 2 
J =2 

Lemma 2 therefore applies: 

[(a + D O ' + Fn _2) - 1] = [(a + l)c' - 1] + F , 

and by the induction hypothesis, this equals 

(1 + Fn + Fn + • • • 4- Fn ) + Fn s \ n1 n2
 nk-i nk 

so that Lemma 3 is proved* 

Lemma 4 

The set of all positive integers C of the form 
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1 +Fnx-2+Fn2-2+ '•• +Fnk-1' n as in (4), (5) 

toge ther with 1, i s the s e t of a l l p o s i t i v e i n t e g e r s . 

Proof: Let C be any p o s i t i v e in t ege r > 1 and l e t C - 1 have Zecken-
dorf sum 

Fu + Fu + • • • + Fu. . 

(If Fu = 1, it is understood that u1 = 2.) Then C equals the sum (5) with 
j = k and n^ = Ui + 2 for i = 1, 2, . .., ?c. 

Theorem 

The sums of distinct terms of the truncated Fibonacci sequence 

(2, 3, 5, 8, ...) 
form the sequence 

[an - 1], n = 2, 3, 4, ... . 

Proof: By Lemmas 3 and 4, the set of positive integers that are not 
such sums forms the sequence 

[(a+l)n- 1], n = l , 2, 3, ... . 

Applying Beatty's method (based on a famous problem published in [1]) to 
the sequence [(a + l)n]9we conclude that the complement of this sequence 
is [an]. The complement of [ (a + l)n - 1] in the positive integers is 
therefore [an - 1], n = 2, 3, 4, ... . 

Remarks: 

1. The first 360 terms of the sequence [an - l],i.e., the first 360 
positive integers whose Zeckendorf sums do require 1, are listed 
in [2, pp. 62-64]. 

2. Fraenkel, Levitt, & Shimshoni [4] observe in their Corollary 1.3 
that a certain property relating to Zeckendorf-type sums holds 
if and only if a has the form 

1 |(2 - a + Va2 + 4) 

for some positive integer a. When a = 2S we have a = and the 
sequence analogous to 1, 2, 3, 5, 8, 135 ... is 19 3, 7, 17, 419 
99, ... . The first few numbers expressible as Zeckendorf-type 
sums of the truncated sequence 3, 7, 17, 41, 99, ... (see [4, p. 
337, item (i) , for a precise definition of Zeckendorf-type sums 
in this setting) are 3, 6, 7, 10, 13, 14. Sequences of the form 
[yn + 6] cannot yield 3, 6, 7, consecutively. Therefore, Corol-
lary 1.3 of [4] offers no immediate generalization of the theorem 
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on sums from the truncated Fibonacci sequence. Does any nontri-
vial generalization exist? 

3. The interested reader should consult Fraenkel, Levitt, & Shim-
shoni [4J. Their Theorem 1 states that for a = (1 + \/5)/2, the 
numbers [na] are "even" P-system numbers (= Zeckendorf sums, al-
though they are not so named in [4]) and the numbers [n|3] are 
"odd." The one-free Zeckendorf sums discussed in this present 
work are [na - 1], some of which are even and some of which are 
odd in the sense of [4]» Being one—free is equivalent to ending 
in zero in [4]; however, the attention in [4] is on the number of 
terminal zeros—whether that number is even or odd, and no cri-
terion is given in [4] for whether the terminal digit is zero. 

REFERENCES 

1. S. Beatty. Problem 3177. American Math. Monthly 33 (1926):159; 34 
(1927):159. 

2. Bro. Alfred Brousseau. Fibonacci and Related Number Theoretic Tables. 
Santa Clara, Calif.: The Fibonacci Association, 1972. 

3. D. E. Daykin. "Representation of Natural Numbers as Sums of Gener-
alized Fibonacci Numbers." J. London Math, Soc. 35 (1960):143-160. 

4. A. Fraenkel, J. Levitt, & M. Shimshoni. "Characterization of the Set 
of Values f(n) = [na], n = 1, 2, ...". Discrete Math. 2 (1972):335-
345. 

5. C. G. Lekkerkerker. "Voorstelling van Fibonacci." Simon Stevin 29 
(1951-52):190-195. 

6. J. Roberts. Elementary Number Theory. Cambridge: MIT Press, 1977. 

7. K. Stolarsky. "Beatty Sequences, Continued Fractions, and Certain 
Shift Operators." Canadian Math. Bull. 19 (1976):473-482. 

8. E. Zeckendorf. "Representation des nombres naturels par une soome de 
nombres de Fibonacci ou de nombres de Lucas." Bull. Soc. Royale Sci. 
Liege 41 (1972):179-182. 

•<>•<>• 

1983] 57 


