INTERSECTIONS OF SECOND-ORDER LINEAR RECURSIVE SEQUENCES

A. G. SHANNON
The New South Wales Institute of Technology, Sydney, Australia and
Universidad de Navarra, Pamplona, Spain
(Submitted September 1981)

1. INTRODUCTION

We consider here intersections of positive integer sequences

$$
\left\{w_{n}\left(w_{0}, w_{1} ; p,-q\right)\right\}
$$

which satisfy the second-order linear recurrence relation

$$
w_{n}=p w_{n-1}+q w_{n-2},
$$

where p, q are positive integers, $p \geqslant q$, and which have initial terms w_{0}, w_{1}. Many properties of $\left\{w_{n}\right\}$ have been studied by Horadam [2; 3; 4] (and elsewhere), to whom some of the notation is due. We look at conditions for fewer than two intersections, exactly two intersections, and more than two intersections. This is a generalization of work of Stein [5] who applied it to his study of varieties and quasigroups [6] in which he constructed groupoids which satisfied the identity $\alpha((a \cdot b \alpha) a)=b$ but not $(a(a b \cdot a)) a=b$.

2. FEWER THAN TWO INTERSECTIONS

We shall first establish some lemmas which will be used to show that two of these generalized Fibonacci sequences with the same p and q generally do not meet.

Suppose the integers $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}$, and b_{1} are such that

$$
a_{2}>b_{0}>a_{0} \quad \text { and } \quad a_{3}>b_{1}>a_{1}
$$

These conditions are not as restrictive as they might appear, although they may require the sequences being compared to be realigned by redefining the initial terms. We consider the sets

$$
\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\} \text { and }\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}
$$

and we seek an upper bound L for the number of a_{1}^{\prime} s ($b_{1}>a_{1} \geqslant b_{0}$) such that

$$
\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\} \cap\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\} \neq \emptyset
$$

We shall show that if $A(b)=b-L\left(b=b_{1}-b_{0}\right)$ is the number of a_{1} 's. such that if this intersection is nonempty, then $\lim _{b \rightarrow \infty} A(b) / b=1$; that is, these generalized sequences do not meet, because if $\lim _{n \rightarrow \infty} A(n) / n=1$, then we can say that for the predicate P about positive integers $n\{n: P(n)$ is true $\}$ has density 1 , which means that P holds "for almost all n."

We first examine where $\left\{w_{n}\left(\alpha_{0}, \alpha_{1} ; p,-q\right)\right\}$ and $\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}$ might meet. Since $a_{0}<b_{0}$ and $a_{1}<b_{1}$, then $a_{n}<b_{n}$ for all n by induction. Thus, if $a_{k} \varepsilon\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}$ and $a_{k}=b_{i}$, then i must be less than k.

Now
so that

$$
a_{2}>b_{0}, \text { and } a_{3}>b_{1}
$$

that is,

$$
a_{4}=p a_{3}+q a_{2}>p b_{1}+q b_{0}=b_{2}, \text { and so on; }
$$

Thus, if

$$
\alpha_{k}>b_{k-2} \text { for } k \geqslant 3
$$

then

$$
a_{k} \varepsilon\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}
$$

$$
b_{k-2}<a_{k}<b_{k} ; \text { that is, } a_{k}=b_{k-1}
$$

We next examine the a_{1} for which $a_{k}=b_{k-1}$. Since

$$
a_{k}=a_{1} u_{k-1}+q a_{0} u_{k-2} \quad \text { (from (3.14) of [2]) }
$$

where $\left\{u_{n}\right\}=\left\{w_{n}(1, p ; p,-q)\right\}$ is related to Lucas' sequence, then

$$
a_{k}=b_{k-1}
$$

is equivalent to

$$
b_{k-1}=a_{1} u_{k-1}+q a_{0} u_{k-2} \quad \text { or } \quad a_{1}=\left(b_{k-1}-q \alpha_{0} u_{k-2}\right) / u_{k-1}
$$

We now define

$$
x_{k}=\left(b_{k-1}-q a_{0} u_{k-2}\right) / u_{k-1},
$$

and we shall show that $x_{1}, x_{2}, x_{3}, \ldots$ has a limit X, that it approaches this limit in an oscillating fashion, and that $x_{k+1}-x_{k}$ approaches zero quickly.

Lemma 1

$$
\begin{aligned}
& x_{k+1}-x_{k}=(-q)^{k-1}\left(b_{1}-b_{0}-q \alpha_{0}\right) / u_{k} u_{k-1} \\
& \text { Proof: } x_{k+1}-x_{k}=\frac{b_{k}-q a_{0} u_{k-1}}{u_{k}}-\frac{b_{k-1}-q a_{0} u_{k-2}}{u_{k-1}} \\
&=\frac{\left(b_{k} u_{k-1}-b_{k-1} u_{k}\right)+q a_{0}\left(u_{k} u_{k-2}-u_{k-1}^{2}\right)}{u_{k} u_{k-1}}
\end{aligned}
$$

Now

$$
\begin{aligned}
(-q)^{k-1} & =u_{k-1}^{2}-u_{k} u_{k-2}, \quad \text { (from (27) of [3]) } \\
b_{k} u_{k-1} & =b_{1} u_{k-1}^{2}+q b_{0} u_{k-1} u_{k-2}, \quad \text { (from (3.14) of [2]) } \\
b_{k-1} u_{k} & =b_{1} u_{k} u_{k-2}+q b_{0} u_{k} u_{k-3},
\end{aligned}
$$

so that

$$
\begin{aligned}
b_{k} u_{k-1}-b_{k-1} u_{k} & =b_{1}\left(u_{k-1}^{2}-u_{k} u_{k-2}\right)+q b_{0}\left(u_{k-1} u_{k-2}-u_{k} u_{k-3}\right) \\
& =(-q)^{k-1} b_{1}-(-q)^{k-1} b_{0} \\
(-q)^{k-2} & =u_{k-1} u_{k-2}-u_{k} u_{k-3} \quad \text { (from 4.21) of [2]). }
\end{aligned}
$$

since

This gives the required result.
Lemma 2
$\left|x_{k+1}-x_{k}\right|<\left|b_{1}-b_{0}-q a_{0}\right| / \alpha^{2 k-4}$, where $\alpha, \beta,|\alpha|>|\beta|$, are the roots, assumed distinct, of

$$
x^{2}-p x-q=0
$$

Proof: $u_{k}=p u_{k-1}+q u_{k-2} \geqslant p u_{k-1}$

$$
\geqslant q u_{k-1} \quad(p \geqslant q)
$$

$$
\geqslant q^{2} u_{k-2} \geqslant \cdots \geqslant q^{k} u_{0} \geqslant q^{k-1}
$$

and

$$
u_{k} u_{k-1}>q^{2 k-3}
$$

Thus

$$
\left|x_{k+1}-x_{k}\right|<\left|\left(b_{1}-b_{0}-q a_{0}\right) / q^{k-2}\right|,
$$

which implies that the x_{k} 's converge to a limit X in an oscillating fashion. Now

$$
|q|^{k-2}=|\alpha|^{k-2}|\beta|^{k-2}<\alpha^{2 k-4},
$$

and

$$
\left|x_{k+1}-x_{k}\right|<\left|b_{1}-b_{0}-q a_{0}\right| / \alpha^{2 k-4}
$$

Theorem 1
If a_{0} is a positive integer and $\left\{\omega_{n}\right\}$ is a generalized Fibonacci sequence, then for almost all $\alpha_{1},\left\{\omega_{n}\left(a_{0}, \alpha_{1} ; p,-q\right)\right\} \cap\left\{w_{n}\right\}$ consists of at most the element α_{0}.

Proof: It follows from Lemma 2 that at most one x_{k} is an integer for those k which satisfy the inequality

$$
\left(b_{1}-b_{0}-q a_{0}\right) / \alpha^{2 k-4}<1
$$

INTERSECTIONS OF SECOND-ORDER LINEAR RECURSIVE SEQUENCES

or, equivalently, the inequality

$$
k>2+\underline{\log }\left(b_{1}-b_{0}-q a_{0}\right)^{1 / 2}
$$

in which 10 g stands for logarithm to the base $|\alpha|$. Thus the total number of k 's for which x_{k} is an integer (since α_{1} must be an integer) is at most

$$
L=2+\log \left(b_{1}-b_{0}-q a_{0}\right)^{1 / 2} .
$$

If we choose b_{0} such that $b_{0}=c_{m}$ and $b_{1}=c_{m+1}, c_{m} \varepsilon\left\{w_{n}\left(c_{0}, c_{1} ; p,-q\right)\right\}$, where $c_{m+1} / c_{m}<[1+\alpha]$, then L is small in comparison with $b-b_{0}$. There is such an integer m :
since

$$
\begin{aligned}
& c_{m+1} / c_{m}<[1+\alpha] \quad \text { for all } k \geqslant m \\
& \lim _{k \rightarrow \infty} c_{k+1} / c_{k}=\alpha . \quad((1.22) \text { of }[4])
\end{aligned}
$$

We could take $b_{0}=c_{m+1}$ or c_{m+2} and still conclude that the total number of $a_{1}^{\prime \prime}$ s $\left(b_{0} \leqslant a_{1}<b_{1}\right)$ for which $\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\}$ meets $\left\{w_{n}\left(b_{0}, b_{1}\right.\right.$; $p,-q)\}$ is small in comparison with $b=b_{1}-b_{0}$.

Thus
and since
we have

$$
\begin{aligned}
& A(b)=b-L, \\
& \lim _{b \rightarrow \infty}(\underline{\log } b) / b=0, \\
& \lim _{b \rightarrow \infty} A(b) / b= 1-\frac{\lim _{b \rightarrow \infty}\left(2+\underline{\log }\left(b-q a_{0}\right)^{1 / 2}\right) / b}{=} \\
& 1, \text { as required. }
\end{aligned}
$$

Thus, for allmost all $\alpha_{1},\left\{w_{n}\right\} \cap\left\{w_{n}\left(\alpha_{0}, \alpha_{1} ; p,-q\right)\right\}$ contains a_{0} only or is empty.

3. EXACTLY TWO INTERSECTIONS

Lemma 3

$$
\text { If } \alpha_{i}=b_{j} \text { and } a_{i-1} \neq b_{j-1} \text {, then for } r \geqslant 1
$$

$$
b_{j+r} \not \equiv\left\{w_{n}\left(a_{0}, \alpha_{1} ; p,-q\right)\right\} \quad \text { and } \quad a_{i+r} \not \equiv\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\} .
$$

Proof: If $a_{i-1}>b_{j-1}$, then $\alpha_{i+1}>b_{j+1}$, and
since

$$
\alpha_{i+1}=p \alpha_{i}+q \alpha_{i-1}<p b_{j+1}+q b_{j}=b_{j+2},
$$

$$
a_{i-1}<a_{i}=b_{j}<b_{j+1}
$$

Thus

$$
a_{i}<b_{j+1}<a_{i+1} \quad \text { and } \quad a_{i+1}<b_{j+2}<a_{i+2},
$$

and, by induction,

$$
a_{i+r-1}<b_{j+r}<a_{i+r} \quad(r \geqslant 1) .
$$

Hence, $b_{j+r} \not \ddagger\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\}, r \geqslant 1$, from which the lemma follows. Theorem 2

If $\left\{w_{n}\left(\alpha_{0}, \alpha_{1} ; p,-q\right)\right\}$ and $\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}$ meet exactly twice, then at least one of these statements holds:

$$
a_{0} \varepsilon\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}, b_{0} \varepsilon\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\} .
$$

As an illustration of Theorem 2, consider the sequences

$$
1,4,5,9,14, \ldots, \text { and } 1,1,2,3,5,8,13, \ldots \text {; }
$$

the second of these is the sequence of ordinary Fibonacci numbers

$$
\left\{w_{n}(1,1 ; 1,-1)\right\} .
$$

Proof of Theorem 2: If $a_{i}=b_{j}, i, j>0$, and the sequences meet exactly twice, then $a_{i-1} \neq b_{j-1}$; otherwise the sequences would be identical from those terms on, as can be seen from Theorem 3. (We need $i, j>0$, since we have not specified a_{n}, b_{n} for $n<0$.) Thus, from Lemma 3,

$$
b_{j+r} \not \ddagger\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\} \quad \text { and } \quad a_{i+r} \notin\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}, r \geqslant 1 .
$$

So $a_{n}=b_{m}, 0<m<j, 0<n<i$, and, again, $a_{n-1} \neq b_{m-1}$; otherwise the sequences would be identical from those terms on. But from Lemma 3 this implies that

$$
b_{m+n} \not \ddagger\left\{w_{n}\left(a_{0}, a_{1} ; p,-q\right)\right\} \quad \text { and } \quad a_{n+r} \notin\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}, r \geqslant 1,
$$

which contradicts the assumption that $a_{i}=b_{j}$. So the only other possibilities are that $\alpha_{0}=b_{m}$ for some m or $\alpha_{n}=b_{0}$ for some n, as required. This establishes the theorem.
4. MORE THAN TWO INTERSECTIONS

Theorem 3
If $\left\{w_{n}\left(\alpha_{0}, \alpha_{1} ; p,-q\right)\right\}$ and $\left\{w_{n}\left(b_{0}, b_{1} ; p,-q\right)\right\}$ have two consecutive terms equal, then they are identical from those terms on.

Proof: If $a_{i}=b_{j}$ and $a_{i-1}=b_{j-1}$, then

$$
a_{i+1}=p a_{i}+q a_{i-1}=p b_{j}+q b_{j-1}=b_{j+1}
$$

and the result follows by induction.

INTERSECTIONS OF SECOND-ORDER LINEAR RECURSIVE SEQUENCES

5. REMARKS

A. It is of interest to note that the number of terms of $\left\{w_{n}\left(\alpha_{0}, \alpha_{1} ; p\right.\right.$, $-q)\}$ not exceeding b_{0} is asymptotic to

$$
\underline{\log }\left(b_{0}(\alpha-\beta) /\left(\alpha_{1} \alpha+a_{0} \alpha \beta\right)\right) . \quad \text { (Horadam [4]) }
$$

B. As an illustration of Theorem 1 , if we consider the case where $p=q$ $=1$, and if we take $a_{0}=1, b_{0}=100, b_{1}=191$, then $b_{2}=291, b_{3}=392$, $b_{4}=683$. When:

$$
\begin{array}{ll}
a_{1}=100, & a_{1}=b_{0} ; \\
a_{1}=190, & a_{2}=b_{1} ; \quad a_{1}=145, a_{3}=b_{2} ; \\
a_{1}=130, & a_{4}=b_{3} ;
\end{array} a_{1}=136, a_{5}=b_{4} .
$$

Thereafter, there are no more integer values of α_{1} that yield $\alpha_{k}=b_{k-1}$. Thus $100,130,136,145$, and 190 are the only values of $\alpha_{1}\left(100 \leqslant \alpha_{1}<191\right)$ for which

$$
\left\{w_{n}\left(1, \alpha_{1} ; 1,-1\right)\right\} \cap\left\{w_{n}(100,191 ; 1,-1)\right\} \neq \emptyset .
$$

Also, $\left[\left(\frac{1}{2}(4+\underline{\mathrm{log}} 90)\right)\right]=6$, so the bound L is valid.
C. It is not apparent how Theorem 1 can be elegantly generalized to arbitrary order sequences. If $\left\{w_{n}^{(r)}\right\}$ satisfies the recurrence relation

$$
w_{n}^{(r)}=\sum_{j=1}^{n}(-1)^{j+1} P_{r j} w_{n-j}^{(r)} \quad n \geqslant r
$$

with suitable initial values, where the $P_{r_{j}}$ are arbitrary integers, and if $\left\{u_{n}^{(n)}\right\}$ satisfies the same recurrence relation, but has initial values given by

$$
u_{0}^{(r)}=u_{1}^{(r)}=\cdots=u_{r-2}^{(r)}=0, u_{r-1}^{(r)}=1,
$$

then it can be proved that

$$
w_{n}^{(r)}=\sum_{j=0}^{r-1}\left(\sum_{k=0}^{j}(-1)^{j-k} P_{r_{j}} w_{k}^{(r)}\right) u_{n-j+1}^{(r)},
$$

where $P_{r 0}=1$. When $r=2$, this becomes

$$
\begin{aligned}
w_{n}^{(2)} & =w_{1}^{(2)} u_{n}^{(2)}+w_{0}^{(2)} u_{n+1}^{(2)}-P_{21} u_{n}^{(2)} \\
& =w_{1}^{(2)} u_{n}^{(2)}-P_{22} w_{0}^{(2)} u_{n-1}^{(2)}
\end{aligned}
$$

which is Eq. (3.14) of [2] for the sequences

$$
\left\{w_{n}^{(2)}\right\}=\left\{w_{n}\left(w_{0}^{(2)}, w_{1}^{(2)} ; P_{21}, P_{22}\right)\right\}
$$

and

$$
\left\{u_{n+1}^{(2)}\right\}=\left\{w_{n}\left(1, P_{21} ; P_{21}, P_{22}\right)\right\} .
$$

INTERSECTIONS OF SECOND-ORDER LINEAR RECURSIVE SEQUENCES

Thus, one of the key equations in Theorem 1 generalizes to

$$
\begin{aligned}
w_{r-1}^{(r)}=\left(w_{n}^{(r)}\right. & -\sum_{j=0}^{r-2}(-1)^{j-r-1} P_{r, r-j-1} w_{j}^{(r)} u_{n-r+2}^{(r)} \\
& \left.+\sum_{k=0}^{j}(-1)^{j-k} P_{r, j-k} w_{k}^{(r)} u_{n-j+1}^{(r)}\right) / u_{n-r+2}^{(r)},
\end{aligned}
$$

which is rather cumbersome.
Thanks are expressed to the referee for several useful suggestions.

REFERENCES

1. A. F. Horadam. "A Generalized Fibonacci Sequence." American Mathematical Monthly 68 (1961):455-459.
2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." Fibonacci Quarterly 3 (1965):161-176.
3. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized Sequence of Numbers." Duke Math. J. 32 (1965):437-446.
4. A. F. Horadam. "Generalizations of Two Theorems of K. Subba Rao." BuZZ. Calcutta Math. Soc. 58 (1966):23-29.
5. S. K. Stein. "The Intersection of Fibonacci Sequences." Mich. Math. J. 9 (1962):399-402.
6. S. K. Stein. "Finite Models of Identities." Proc. Amer. Math. Soc. 14 (1963):216-222.
