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1. INTRODUCTION 

Ore [2] investigated the harmonic mean H(n) of the divisors of n3 and 
showed that 

H(n) = nx (n) I'o(n) , 

where, as usual, x(n) and o(n) denote, respectively, the number and sum 
of the divisors of n. An integer n is said to be harmonic if H(n) is an 
integer. For example, 6 and 140 are harmonic, since 

H(6) = 2 and #(140) = 5. 

Ore proved that any perfect number (even or odd) is harmonic, and that 
no prime power is harmonic. Pomerance [3] proved that any harmonic num-
ber of the form paqb

9 with p and q prime, must be an even perfect number. 
Ore also conjectured that there is no odd n > 1 which is harmonic, and 
Garcia [1] verified OreTs conjecture for n < 107; however, since 0reTs 
conjecture implies that there are no odd perfect numbers, any proof must 
be quite deep. 

A divisor d of an integer n is a unitary divisor if g.c.d. (d9 n/d) 
= 1, in which case we write d\\n. Let T*(n) and o*(n) be, respectively, 
the number and sum of the unitary divisors of n. If n has oo(n) distinct 
prime factors, it is easy to show that 

T*(n) = 2U)(n) and o*(n) = O (1 + p e ) , 
pe\\n 

both functions being multiplicative. 

Let H*(n) be the harmonic mean of the unitary divisors of n. It fol-
lows that 

H*(n) - nT*(n)/o*(n) = II — ^ 
Ve\\n 1 + V6 

We say that n is unitary harmonic if H*(n) is an integer. 

In this paper we outline the proofs of two results: 
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Theorem 1 

There are 23 unitary harmonic numbers n with 0)(n) < 4 (see Table 1). 

Theorem 2 

There are 43 unitary harmonic numbers n < 106. These numbers, which 
include all but one of those in Theorem 1, are given in Table 2. 

TABLE 1 

w(w) 

0 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

4 

H*(n) 

1 

2 

3 

4 

4 

7 

7 

7 

7 

9 

9 

10 

1 

6 

45 

60 

90 

15,925 

55,125 

420 

630 

3,780 

46,494 

7,560 

n 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

2 • 3 

325 

223 • 5 

2 • 325 

527213 
3 2 5 3 7 2 

223 • 5 

2 • 325 

23335 • 

2- 3^7 

23335 * 

• 7 

• 7 

7 

• 41 

7 

o)(n) 

4 

4 

4 

4 

4 

4 

i 4 
4 

4 

4 

4 

H*(n) 

10 

10 

10 

11 

12 

12 

12 

12 

13 

13 

15 

9,100 

31,500 

330,750 

16,632 

51,408 

66,528 

185,976 

661,500 

646,425 

716,625 

20,341,125 

n 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

22527 • 13 

2232537 

2 • 33537 

23337 • 11 

24337 • 17 

25337 • 11 

233lf7 • 41 

22335372 

325213217 

32537213 

3V7241 

TABLE 2 

H*(n) 

1 

2 

2 

3 

3 

7 

7 

1 

6 

45 

60 

90 

420 

630 

n 

= 2-3 

= 325 

= 223- 5 

= 2 • 325 

= 223 • 5 • 7 

= 2 • 325 • 7 

H*(n) 

9 

13 

10 

13 

10 

7 

n 

3,780 = 22335 • 7 

5,460 = 223 • 5 • 7 • 13 

7,560 = 23335 • 7 

8,190 = 2 • 325 • 7 • 13 

9,100 = 22527 • 13 

15,925 = 527213 

(continued) 
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TABLE 2 (continued) 

H*(n) 

11 

15 

10 

15 

9 

12 

7 

17 

12 

18 

16 

14 

19 

20 

19 

16,632 

27,300 

31,500 

40,950 

46,494 

51,408 

55,125 

64,260 

66,528 

81,900 

87,360 

95,550 

143,640 

163,800 

172,900 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

n 

23337 • 11 

223 • 527 • 13 

2232537 

2 • 32527 • 13 

2-3^7- 41 

2lf337 • 17 
3 2 5 3 7 2 

22335 -7-17 

22337 • 11 

2232527 • 13 

263 • 5 • 7 • 13 

2 • 3 • 527213 

23335 -7-19 

2332527 • 13 

22527 -13-19 

\H*(n) 

12 

15 

20 

10 

20 

18 

22 

19 

13 

12 

13 

17 

18 

33 

20 

185,976 

232,470 

257,040 

330,750 

332,640 

464,940 

565,448 

598,500 

646,425 

661,500 

716,625 

790,398 

859,950 

900,900 

929,880 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

n 

233tf7 • 41 

2 - 345 -7-41 

2tf335 -7-17 

2 - 335372 

25335 -'7 • 11 

22344 -7-41 

2lf337 -11-17 

2232537 - 19 

325213217 

22335372 

32537213 

2 . 347 . 17 . 41 

2- 33527213 

2232527 -11-13 

223**5 -7-41 

The complete proofs of Theorems 1 and 2 are quite tedious, requiring 
many cases and subcases. However, the techniques are quite simple, and 
are adequately illustrated by the cases discussed here. 

2. TECHNIQUES FOR THEOREM 1 

If p and q are (not necessarily distinct) primes and pa < qb, then it is 
easy to show that H*(pa) > H*(qb). This fact can be used, once u)(n) and 
H*(n) are specified, to find an upper bound for the smallest prime power 
unitary divisor of n\ for each choice, the process is repeated to find 
choices for the next smallest prime power unitary divisor, and the pro-
cess continues until all but one of the prime power unitary divisors is 
found; the largest prime power can then be solved for directly, without 
a search. Of course, this procedure is interrupted any time it becomes 
obvious that the as yet unknown portion of n must have more prime divi-
sors than allowed by the prespecified size of o)(n) • 

With 03(n) and H*(n) given, the problem is to find n with 

n/o*(n) =#*(n)/T*(rc) 

being a prespecified fraction, which in turn requires that any odd prime 
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that divides o*(n) must also divide n. Also., since T*(n) is a power of 
2, any odd prime that divides H*(n) must also divide n. Several of the 
cases are shortened by using results of Subbarao and Warren [4] for the 
special case o*(n) = In (i.e., for n being unitary perfect). 

We present here the proof for the case a)(n) = 4, H*(n) = 15, one of 
the longer and subtler cases of Theorem 1. Throughout, let n = pqrs with 
p < q < v < s and p, q, r, and s powers of distinct primes (though not 
necessarily prime). Note that because n/o*(n) = 15/16, 3°  5\pqrs. Also, 
if n has a prime power unitary divisor which is congruent to 3 (mod 4) , 
then n must be even. 

If p > 59, then n/o*(n) > 15/16, so p < 53. 

p = 53: q < 61, so q = 59, which requires that 2 • 3 • 5|PS, a contra-
diction. 

p = 49: q < 64. But q = 61 implies 3 • 5 * 3l|rs, and q = 59 requires 
2* 3 * 5|rs; both of these are impossible. If q = 53, then r < 79, but 
there are no powers of 3 or 5 between 53 and 79. 

p = 47: q < 67 and 2 • 3 * 5|qps, so ̂  = 64, from which follows the im-
possibility 3 • 5 • 13|z»s. 

p = 43: 2* 3°  5* ll\qrs, a contradiction. 

p = 41: q < 71 and 3* 5e 7|gi>s. The only possibility is ̂  = 49, which 
requires v < 103 and 3* 5|rs. This in turn forces r = 81, which implies 
s = 125. Thus we have a unitary harmonic number, since 

#*(34537241) = 15. 

p = 37: q < 79 and 3» 5 • 19|grs5 a contradiction. 

p = 32: <y < 83 and 3 °  5 * ll|qrs, so q = 81. But then 5 • 11 • 4l|ps, 
a contradiction. 

p = 31: q < 89 and 2* 3» 5|grs. There are three unpalatable choices: 
q = 81 requires that 2» 5» 41|rs, and ^ = 64 implies 3- 5« 13|rs, while 
q = 32 forces 3 • 5 • ll|ps. 

p - 291 31 < q < 97, and rs is divisible by at least three primes 
unless q is 89, 81, 59, or 49. If q = 89, then v < 103 and there are no 
powers of 3 or 5 between 89 and 103. If q = 81, then v < 109 and 5 • 4l|ps, 
a contradiction. If q = 59, then p < 167 and the only possible cases are 
r = 125, which implies 3 • 7|s, and v = 81, which forces 5 • 41|s. If q -
49, then v < 193, so either r = 125, which does not leave the required 5 
in the numerator of n/o*(n), or r = 815 which forces 5» 41 \s» Thus p = 29 
is impossible. 
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p = 27: 35 < q < 107 and 2 • 5 • l\qrs9 so the only possible values for 
q are 64 and 49. If q = 64, then 5 • 7 • 13|rs. If q = 49, then 125 < r 
< 251 and 2 • 5|rs, SO r - 138, whence 5 • 43 |s, a contradiction. 

p = 25: 39 < q < 121 and rs is divisible by three or more primes ex-
cept when q is 107, 103, 89, 81, 64, or 53. If q = 107, then r < 125, 
while q - 103 implies r < 128, and q = 89 forces r < 149; in each case, 
3* 13|rs, a contradiction. If q = 81, then r < 157 and 13* 4l|rs, which 
is impossible. If q = 64, then r < 211 and 3* 13Ire; thus r = 169, which 
forces 3 • 1718, or r - 81, in which case 13 • '411s. If q - 53, then r < 
307 and 3* 13|rs, so r is 243, 169, or 81; each of these possibilities 
forces s to be divisible by two distinct primes. 

p = 23: 45 < q < 137 and 2 • 3 • 5\qrs. The possible values for q are 
128, 125, 81, and 64, but each of these forces rs to be divisible by three 
or more primes, a contradiction in any event. 

p = 19: 75 < q < 227 and 2 • 3 • $\qrs. Thus, q is 128, 125, or 81. 
Each of these possibilities is ruled out since rs cannot be divisible by 
three primes. 

p = 17: 135 < q < 407 and 3* b\qrs. To be within the interval, q can-
not be a power of 5, and q = 243 forces r < 611 and 5 • 6l|rs, a contra-
diction. Therefore, q is a prime power between 135 and 407, congruent to 
1 (mod 4), and such that q + 1 has no odd prime factor other than 3fs, 
5fs, and at most one 17. There are but two possibilities: q = 269 and 
q- 149. If q = 269, then v < 544 and 3' 5 Irs, a contradiction. If q = 
149, then 1446 < r < 283 and 3- 5|rs, so r = 2187, whence 5- 547|s, a 
contradiction. 

p = 16: 255 < q < 765 and 3 • 5 • 17\qrs9 so q is 729,625, or 289, each 
of which would require that rs be divisible by three distinct primes. 

Finally, if q < 16, then n/o*(n) < 15/16. 

3. TECHNIQUES FOR THEOREM 2 

Suppose that n is unitary harmonic, i.e., that 

H*(n) = nx*(n)/a*(w) 

is an integer. Suppose also that n < 106 and that 2a|n. Since T*(n) is 
a power of 2, any odd prime that divides o* (n) must also divide n. For 
a > 0, o*(2a) = 1 + 2a, so 2a||n implies 2a(l + 2a)|n, and hence a < 10. 

Except for a = 0, the supposition that 2a||n requires that n be divi-
sible by the largest prime dividing 1 + 2a, and the restriction that n < 
106 can be used to determine how many times this prime divides n. This 
gives rise to newly known unitary divisors of n9 and therefore (usually) 
newly known odd primes dividing o*(n) and hence n. The procedure is re-
peated until all the possibilities are exhausted. 
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No particular difficulty arises with this procedure, except when one 
runs out of primes with which to work, and then the procedure breaks down 
completely. In such a case we write n = Nk, where N\\n and k is unknown. 
In light of Theorem 1, we may require (o(n) > 4, which imposes a lower 
bound on o)(/c) ; and n < 10 imposes an upper bound on k and hence on oj(k) . 
There are also divisibility restrictions on k and a*(k) from N and a*(N). 
See the 2 • 325||n and 2 a 3 s 7||n cases in the discussion below. 

The n odd (a - 0) case of Theorem 2 is somewhat easier to handle than 
the others since pb\\n implies p b = 1 (mod 4) in order to avoid having too 
many 2? s in the denominator of H*(n). 

We present here the a = 1 (i.e., 2n) case of Theorem 2: 

Immediate size contradictions result if 312 \n or If 3b\\n for 6 < b ^ 
11. If 33||n, then 6l| n, so either 612|n or 6l||n, in which case 3l|n; both 
possibilities make n > 106. 

If 3If||n, then 41 |n. If 413|n or 412||n, then n > 106, so 4l||n. Then 
7|n, and n > 106 if 7s\n or 72||n. If n = 2 • 3 • 7 • 41fe, then 1 < & < 21, 
(2 • 3 e 7, fe) = 1 and o*(k) 18, so k is 5 or 17. Thus we have located two 
unitary harmonic numbers: 

H*(2 • 345 • 7 • 41) = 15, 

#*(2 • 347 • 17 • 41) = 17. 

If 33||n, then 7 |n. Size contradictions easily result if 76|n or 75\\n 
or 7k\\n or 73|n. If 72||n, then 52|n, and n > 106 if 5^^. If 53||n, then 
n = 2 . 335372 since n < 106, but a)(n) = 4. Therefore, 52||n, so 13|n and 
hence 131|n» and another unitary harmonic number is found: 

#*(2 • 33527213) = 18. 

If 337||n, then n = 2- 337fe. It follows that tf*(w) = 9H*(k)/2. But 
H*(k) does not have an even numerator after reduction, so H*(n) is not an 
integer. 

If 32|n, then 5|n. Size contradictions occur if 57 \n or 56 \\n or 5^ lln, 
while there are too many 3fs in the denominator of H*(n) if 55\\n or 53||n. 
Therefore, 52j|n or 5||n-

If 3252|jn, then 13|n, and n > 106 if I3h\n or 133|jn or 132||n. Thus, 
13||n, so 7\n, but n > 106 if 73|n5 and if 72||n there are too many 5fs in 
the denominator of H*(n) , so 7||n. Therefore, 

w = 2- 32527 • 13- fe, 

where fe < 24, (2 • 3 • 5 • 7 • 13, k) = 1 and a*(fc)|30. This locates another 
unitary harmonic number: 
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#*(2 • 32527 • 13) = 15. 

If 2 • 325||n, then n = 2 • 325 • k with ( 2 - 3 - 5 , k) = 1, fc < 11,111 and 
(a*(fc), 3-5)= 1, so k is composed of prime powers from the set 

{7, 13, 31, 37, 43, 61, 67, 73, 97, 103, 121, . . . } . 

Since a)(n) > 5, co(fc) > 2. However, ca(fe) < 3 since 

7 • 13 • 31 • 37 > 11,111. 

If co(fc) = 3, then the smallest prime dividing k is 7, since 

13 • 31 • 37 > 11,111. 

Also, 37|fe or else 19|fc, which is impossible if fc < 11,111. Thus, the 
only possibility with b)(k) = 3 is k = 1 * 13 • 31, which forces E*(ri) to be 
nonintegral. If 0)(/c) = 2, then write n = 2 • 325 • p • q. Now, p < 103, 
since 103- 121 > 11,111 and 0*(q)\l6p9 so the only possibility is p = 7 
and q = 13, and another unitary harmonic number is found: 

#*(2- 325 • 7 • 13) = 13. 

If 3||n, then n = 2 - 3 • k wi th k < 166,666, (2 • 3 , fc) = 1, (a*(fe), 3) 
= 1 and oo(fc) > 3 . But oo(fe) < 4 , s ince 

7 - 13 • 19 • 25 • 31 > 166,666. 

If co(fe) = 4, the smallest possible next prime power is 7, since 

13 • 19 • 25 • 31 > 166,666. 

But if 3- 7|n, then #*(n)'has at least one excess 2 in its denominator. 
Therefore, (o(fe) = 3 , so let fe = pqr with p < q < r. Now, p < 49, since 
49 • 61 .• 67 > 166,666. We have the following possibilities: 

p = 43 forces ll|n. But lljfn, so n > 2 - 3 • 7211243 > 106. 

P = 37 implies 19|n. But 19fn, so n > 2 • 3•• 19237 • 43 > 106. 

p = 31 leaves extra 2fs in the denominator of H*(n). 

p = 25 requires 13 |n, but 13|fn. If 134|n, then n > 106, and the same 
is true if 133|n, because then 157 \n. Then 132||n, so 17 \n and 17||n, so 
n > 2 • 3 • 5213^172 > 106. 

p - 19 forces 5|w, but 5|n. But n > 106 if 56|n or 54||n, and there 
are extra 3's in the denominator of H*(n) if 55||n or 53||n. Therefore, 
52|n, so 13|n and 13|n, but n > 106 if 133|n, and hence 132||n, whence 
17jn and n > 106. 
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p = 13 requires l\n$ and l\n. If 75|n or lh\n or 73||n, then n > 106. 
Thus, 72||n, so 52|n. Then n = 2* 3* 527213 • k with fe < 10. The only 
value of k that checks out is k = 1: 

#*(2 * 3 • 527213) = 14. 

p = 7 leaves extra 2?s in the denominator of H*(n). 

Since 2||n, 3\n and the 2>\n subcase is eliminated. Thus, the l\n case 
of the theorem is proved. 

4. LARGE INTEGRAL VALUES OF H*(n) 

It is not at all hard to construct n with H*(n) a large integer. For ex-
ample, one may start with the fifth unitary perfect number [5], 

2183 • 5^7 • 11 • 13 • 19 * 37 * 79 • 109 • 157 • 313, 

and have H*(n) = 2 1 = 2048. However, substituting for various blocks of 
unitary divisors yields the related number 

n = 2183If5if7lfl 1213217 *19231« 37 *41° 43-61 •79-109-157 • 181 °313°  601 • 1201, 

for which H*(n) = 211 3 • 7 • 19 = 817,152. 

The author conjectures that there are infinitely many unitary har-
monic numbers, including infinitely many odd ones, but that there are 
only finitely many unitary harmonic numbers with a)(n) fixed. 
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