generalized profile Numbers

SHMUEL ZAKS

Department of Computer Science, Technion, Haifa, Israel
(Submitted December 1981)

INTRODUCTION

A family of binary trees $\left\{T_{i}\right\}$ is studied in [2]. The numbers $p(n, k)$ of internal nodes on level k in T_{n} (the root is considered to be on level 0) are called profile numbers, and they "enjoy a number of features that are strikingly similar to properties of binomial coefficients" (from [2]). We extend the results in [2] to t-ary trees.

DISCUSSION

We discuss t-ary trees (see Knuth [1]). A t-ary tree either consists of a single root, or a root that has t ordered sons, each being a root of another t-ary tree.

Let T_{1}^{t} be the tree

$$
T_{1}^{t}:
$$

and for $i \geqslant 1$, let T_{i+1}^{t} be built from T_{i}^{t} by substituting T_{i}^{t} in each leaf

[Feb.

generalized profile numbers

Let $p_{t}(n, k)$ denote the number of internal nodes at level k in the tree T_{n}^{t}.

The numbers $p_{t}(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
p_{t}(n+1, k+1)=(t-1) p_{t}(n, k)+t p_{t}(n, k-1) \tag{1}
\end{equation*}
$$

together with the boundary conditions

$$
\begin{align*}
& p_{t}(n, 0)=1 \\
& p_{t}(1,1)=1 \tag{2}\\
& p_{t}(n, 1)=t \quad \text { for } \quad n>1 \\
& p_{t}(1, k)=0 \quad \text { for } \quad k>1
\end{align*}
$$

The corresponding trees and sequences for the case of binary trees ($t=2$) is studied in [2]. Thus, T_{n} and $p(n, k)$ in [2] are denoted here by T_{n}^{2} and $p_{2}(n, k)$, respectively.

We first show that

$$
\begin{equation*}
p_{t}(n, k)=t^{k-n} \sum_{0 \leqslant i<2 n-k}(t-1)^{i}\binom{n}{i} \tag{3}
\end{equation*}
$$

where $n \geqslant 1, k \geqslant 0$, and the $\binom{n}{i}$'s are the binomial coefficients.
Note that when $k<n$ we have $p_{t}(n, k)=t^{k}$.
The expression in (3) is easily shown to satisfy the boundary conditions (2). To continue, we induct on n (and arbitrary k); using (1) and the inductive hypothesis, we get

$$
\begin{aligned}
& p_{t}(n+1, k+1)=(t-1) p_{t}(n, k)+t p_{t}(n, k-1) \\
= & t^{k-n} \sum_{0 \leqslant i<2 n-k}(t-1)^{i+1}\binom{n}{i}+t^{k-n} \sum_{0 \leqslant i<2 n-k+1}(t-1)^{i}\binom{n}{i} \\
= & t^{k-n} \sum_{0<i<2 n-k+1}(t-1)^{i}\binom{n}{i-1}+t^{k-n}+t^{k-n} \sum_{0<i<2 n-k+1}(t-1)^{i}\binom{n}{i} \\
= & t^{k-n}+t^{k-n} \sum_{0<i<2 n-k+1}(t-1)^{i}\binom{n+1}{i}=t^{k-n} \sum_{0 \leqslant i<2 n-k+1}(t-1)^{i}\binom{n+1}{i}
\end{aligned}
$$

and this establishes (3).
Using (3), we get

$$
\begin{equation*}
p_{t}(n, k+1)=t p_{t}(n, k)-t^{k-n+1}(t-1)^{2 n-k-1}\binom{n}{k-n+1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{t}(n+1, k)=p_{t}(n, k)+t^{k-n-1}(t-1)^{2 n-k}\left[\binom{n}{k-n}+(t-1)\binom{n+1}{k-n}\right] \tag{5}
\end{equation*}
$$

where $n \geqslant 1$ and $k \geqslant 0$.
Let x_{n}^{t} be the number of internal nodes in T_{n}^{t}, namely

$$
\begin{equation*}
x_{n}^{t}=\sum_{0 \leqslant k<2 n} p_{t}(n, k) . \tag{6}
\end{equation*}
$$

Using (3), changing the order of summation, and applying the binomial theorem results in

$$
\begin{equation*}
x_{n}^{t}=\frac{(2 t-1)^{n}-1}{t-1} \tag{7}
\end{equation*}
$$

Note that, by their definition, the numbers x_{n}^{t} satisfy the recurrence relation

$$
\begin{align*}
x_{1}^{t} & =2 \\
x_{i+1}^{t} & =(2 t-1) x_{i}^{t}+2 \text { for } i>0, \tag{8}
\end{align*}
$$

which also implies (7).
Let ℓ_{n}^{t} denote the internal path length (see [1]) of T_{n}^{t}, namely

$$
\begin{equation*}
e_{n}^{t}=\sum_{0 \leqslant k<2 n} k p_{t}(n, k) . \tag{9}
\end{equation*}
$$

The numbers l_{n}^{t} also satisfy the recurrence relation

$$
\begin{align*}
l_{1}^{t} & =1 \\
l_{i+1}^{t} & =(2 t-1) l_{i}+(3 t-1) x_{i}+1 \text { for } i>0 \tag{10}
\end{align*}
$$

Using (9) and (3), or solving (10) with the use of (7), one gets

$$
\begin{equation*}
l_{n}^{t}=\frac{3 t-1}{t-1} n(2 t-1)^{n-1}-\frac{t}{(t-1)^{2}}\left((2 t-1)^{n}-1\right) . \tag{11}
\end{equation*}
$$

The average level e_{n}^{t} of a node in T_{n}^{t} is thus given by ℓ_{n}^{t} / x_{n}^{t}, and satisfies

$$
\begin{equation*}
e_{n}^{t} \approx \frac{3 t-1}{2 t-1} n+0(1) . \tag{12}
\end{equation*}
$$

The results in (1), (2), (3), (4), (5), (7), and (11) are extensions of (1), (3), Theorems $1,2 \mathrm{a}, 2 \mathrm{~b}, 3$, and 4 of [2], respectively.

If we denote

$$
F_{t}(x, y)=\sum_{n \geqslant 1, k \geqslant 0} p_{t}(n, k) x^{n} y^{k},
$$

then, using (1) and (2), we get

$$
\begin{equation*}
F_{t}(x, y)=\frac{x(1+y)}{(1-x)\left(1-t x y+x y-t x y^{2}\right)} . \tag{13}
\end{equation*}
$$

Equations (1) and (7), for the case $t=2$, were noted in [2] to be similar to the recurrence relation

$$
\binom{n+1}{k+1}=\binom{n}{k+1}+\binom{n}{k}
$$

and the summation formula

$$
\sum_{0 \leqslant k<n}\binom{n}{k}=2^{n}-1
$$

The binomial coefficients also satisfy

$$
\sum_{k}(-1)^{k}\binom{n}{k}=0
$$

Using (3), one can show that the same identity holds for any t and n; namely,

$$
\begin{equation*}
\sum_{0 \leqslant k<2 n}(-1)^{k} p_{t}(n, k)=0 \tag{14}
\end{equation*}
$$

REFERENCES

1. D. E. Knuth. The Art of Computer Programming. Vol. I: Fundamental Algorithms. New York: Addison-Wesley, 1968.
2. A. L. Rosenberg. "Profile Numbers." Fibonacci Quarterly 17 (1979): 259-264.
