A NOTE ON THE FIBONACCI SEQUENCE OF ORDER K and the multinomial coefficients

ANDREAS N. PHILIPPOU
University of Patras, Patras, Greece (Submitted July 1980; revised May 1982)

In the sequel, k is a fixed integer greater than or equal to 2 , and n is a nonnegative integer as specified. Recall the following definition [6]:

Definition

The sequence $\left\{f_{n}^{(k)}\right\}_{n=0}^{\infty}$ is said to be the Fibonacci sequence of order k if $f_{0}^{(k)}=0, f_{l}^{(k)}=1$, and

$$
f_{n}^{(k)}=\left\{\begin{array}{l}
f_{n-1}^{(k)}+\cdots+f_{0}^{(k)} \text { if } 2 \leqslant n \leqslant k \\
f_{n-1}^{(k)}+\cdots+f_{n-k}^{(k)} \text { if } n \geqslant k+1
\end{array}\right.
$$

Gabai [2] called $\left\{f_{n}^{(k)}\right\}_{n=-\infty}^{\infty}$ with $f_{n}^{(k)}=0$ for $n \leqslant-1$ the Fibonacci k-sequence. See, also, [1], [4], and [5].

Recently, Philippou and Muwafi [6] obtained the following theorem, which provides a formula for the nth term of the Fibonacci sequence of order k in terms of the multinomial coefficients.

Theorem 1
Let $\left\{f_{n}^{(k)}\right\}_{n=0}^{\infty}$ be the Fibonacci sequence of order k. Then

$$
f_{n+1}^{(k)}=\sum_{n_{1}, \ldots, n_{k}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}, n \geqslant 0,
$$

where the summation is over all nonnegative integers n_{1}, \ldots, n_{k} such that $n_{1}+2 n_{2}+\cdots+k n_{k}=n$.

Presently, a new proof of this theorem is given which is simpler and more direct. In addition, the following theorem is derived, which provides a new formula for the nth term of the Fibonacci sequence of order k in terms of the binomial coefficients.

THE FIBONACCI SEQUENCE OF ORDER k AND THE MULTINOMIAL COEFFICIENTS

Theorem 2
Let $\left\{f_{n}^{(k)}\right\}_{n=0}^{\infty}$ be the Fibonacci sequence of order k. Then

$$
\begin{aligned}
f_{n+1}^{(k)}= & 2^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} 2^{-(k+1) i} \\
& -2^{n-1} \sum_{i=0}^{[(n-1) /(k+1)]}(-1)^{i}(n-1-k i) 2^{-(k+1) i}, n \geqslant 1,
\end{aligned}
$$

where, as usual, $[x]$ denotes the greatest integer in x.

The proofs of the above formulas are based on the following lemma.

Lemma

Let $\left\{f_{n}^{(k)}\right\}_{n=0}^{\infty}$ be the Fibonacci sequence of order k, and denote its generating function by $g_{k}(x)$. Then, for $|x|<1 / 2$,

$$
g_{k}(x)=\frac{x-x^{2}}{1-2 x+x^{k+1}}=\frac{x}{1-x-x^{2}-\cdots-x^{k}} .
$$

Proof: We see from the definition that

$$
f_{2}^{(k)}=1, f_{n}^{(k)}-f_{n-1}^{(k)}=f_{n-1}^{(k)} \text { for } 3 \leqslant n \leqslant k+1 \text {, }
$$

and

$$
f_{n}^{(k)}-f_{n-1}^{(k)}=f_{n-1}^{(k)}-f_{n-1-k}^{(k)} \text { for } n \geqslant k+1 .
$$

Therefore,

$$
f_{n}^{(k)}= \begin{cases}2^{n-2} & 2 \leqslant n \leqslant k \tag{1}\\ 2 f_{n-1}^{(k)}-f_{n-1-k}^{(k)}, & n \geqslant k+1 .\end{cases}
$$

By induction on n, the above relation implies $f_{n}^{(k)} \leqslant 2^{n-2}(n \geqslant 2)$ [5], which shows the convergence of $g_{k}(x)$ for $|x|<1 / 2$. It follows that

$$
\begin{equation*}
g_{k}(x)=\sum_{n=0}^{\infty} x^{n} f_{n}^{(k)}=x+\sum_{n=2}^{k} x^{n} 2^{n-2}+\sum_{n=k+1}^{\infty} x_{n}^{n} f_{n}^{(k)} \text {, by (1), } \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{n=k+1}^{\infty} x^{n} f_{n}^{(k)} & =2 \sum_{n=k+1}^{\infty} x^{n} f_{n-1}^{(k)}-\sum_{n=k+1}^{\infty} x^{n} f_{n-1-k}^{(k)} \tag{3}\\
& =2 x\left(\sum_{n=0}^{\infty} x^{n} f_{n}^{(k)}-x-\sum_{n=2}^{k-1} x^{n} 2^{n-2}\right)-x^{k+1} g_{k}(x)
\end{align*}
$$

THE FIBONACCI SEQUENCE OF ORDER k AND THE MULTINOMIAL COEFFICIENTS

$$
=\left(2 x-x^{k+1}\right) g_{k}(x)-x^{2}-\sum_{n=2}^{k} x^{n} 2^{n-2} .
$$

The last two relations give $g_{k}(x)=x+\left(2 x-x^{k+1}\right) g_{k}(x)-x^{2}$, so that

$$
g_{k}(x)=\frac{x-x^{2}}{1-2 x+x^{k+1}}=\frac{x}{1-x-x^{2}-\cdots-x^{k}}
$$

which shows the lemma.

Proof of Theorem 1: Let $|x|<1 / 2$. Also let $n_{i}(1 \leqslant i \leqslant k)$ be nonnegative integers as specified. Then

$$
\left.\begin{array}{rl}
\sum_{n=0}^{\infty} x^{n} f_{n+1}^{(k)} & =\left(1-x-x^{2}-\cdots-x^{k}\right)^{-1}, \text { by the lemma } \\
& =\sum_{n=0}^{\infty}\left(x+x^{2}+\cdots+x^{k}\right)^{n}, \text { since }\left|x+x^{2}+\cdots+x^{k}\right|<1 \\
& =\sum_{n=0}^{\infty} \sum_{\substack{n_{1}, \cdots, n_{k} \ni \\
n_{1}+\cdots+n_{k}=n}}\left(\begin{array}{c}
n \\
n_{1}
\end{array}, \cdots, n_{k}\right.
\end{array}\right) x^{n_{1}+2 n_{2}+\cdots+k n_{k}},
$$

by the multinomial theorem. Now setting $n_{i}=m_{i}(1 \leqslant i \leqslant k)$ and

$$
n=m-\sum_{i=2}^{k}(i-1) m_{i}
$$

we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \sum_{\substack{n_{1}, \cdots, n_{k} \ni \\
n_{1}+\cdots+n_{k}=n}}\binom{n}{n_{1}, \ldots, n_{k}} x^{n_{1}+2 n_{2}+\cdots+k n_{k}} \tag{5}\\
=\sum_{m=0}^{\infty} x^{m} \sum_{\substack{m_{1}, \ldots, m_{k} \ni \ni \\
m_{1}+2 m_{2}+\cdots+k m_{k}=m}}\binom{m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}} .
\end{align*}
$$

Equations (4) and (5) imply

$$
\sum_{n=0}^{\infty} x^{n} f_{n+1}^{(k)}=\sum_{n=0}^{\infty} x^{n} \sum_{\substack{n_{1}, \ldots, n_{k} \ni \ni \\ n_{1}+2 n_{2}+\cdots+k n_{k}=n}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}
$$

from which the theorem follows.

Proof of Theorem 2: Set $S_{k}=\left\{x \in R ;|x|<1 / 2\right.$ and $\left.\left|2 x-x^{k+1}\right|<1\right\}$, and let $x \in S_{k}$. Then

THE FIBONACCI SEQUENCE OF ORDER k AND THE MULTINOMIAL COEFFICIENTS

$$
\begin{align*}
\sum_{n=0}^{\infty} x^{n} f_{n+1}^{(k)} & =\frac{1-x}{1-2 x+x^{k+1}}, \text { by the 1emma, } \tag{6}\\
& =(1-x) \sum_{n=0}^{\infty}\left(2 x-x^{k+1}\right)^{n} \\
& =(1-x) \sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i} 2^{n-i}(-1)^{i} x^{n+k i},
\end{align*}
$$

by the binomial theorem. Now setting $i=j$ and $n=m-k j$, and defining the sequence $\left\{b_{n}^{(k)}\right\}_{n=0}^{\infty}$ by

$$
\begin{equation*}
b_{n}^{(k)}=2^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} 2^{-(k+1) i}, n \geqslant 0, \tag{7}
\end{equation*}
$$

we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i} 2^{n-i}(-1)^{i} x^{n+k i} & =\sum_{m=0}^{\infty} x^{m} \sum_{j=0}^{[m /(k+1)]}\binom{m-k j}{j} 2^{m-(k+1) j}(-1)^{j} \tag{8}\\
& =\sum_{m=0}^{\infty} x^{m} b_{m}^{(k)} .
\end{align*}
$$

Relations (6) and (8) give

$$
\sum_{n=0}^{\infty} x^{n} f_{n+1}^{(k)}=(1-x) \sum_{n=0}^{\infty} x^{n} b_{n}^{(k)}=1+\sum_{n=1}^{\infty} x^{n}\left(b_{n}^{(k)}-b_{n-1}^{(k)}\right),
$$

since $b_{0}^{(k)}=1$ from (7). Therefore,

$$
\begin{equation*}
f_{n+1}^{(k)}=b_{n}^{(k)}-b_{n-1}^{(k)}, n \geqslant 1 . \tag{9}
\end{equation*}
$$

Relations (7) and (9) establish the theorem.

We note in ending that the above-mentioned same two relations imply

$$
\begin{align*}
\sum_{i=1}^{n} f_{i}^{(k)} & =1+\sum_{i=1}^{n-1}\left(b_{n}^{(k)}-b_{n-1}^{(k)}\right)=b_{n-1}^{(k)} \tag{10}\\
& =2^{n-1} \sum_{i=0}^{[(n-1) /(k+1)]}(-1)^{i}\binom{n-1-k i}{i} 2^{-(k+1) i}, n \geqslant 1,
\end{align*}
$$

which reduces to

$$
\begin{equation*}
\sum_{i=1}^{n} F_{i}=2^{n-1} \sum_{i=0}^{[(n-1) / 3]}(-1)^{i}(n-1-2 i) 2^{-3 i}, n \geqslant 1, \tag{11}
\end{equation*}
$$

since $F_{i}=f_{i}^{(2)}(i \geqslant 0)$ from the definition. Also, observing that

$$
\sum_{i=1}^{n} F_{i}=F_{n+2}-1(n \geqslant 1)
$$

see, for example, Hoggatt [3, (I_{1}), p. 52], we get, from (11), the following identity for the Fibonacci sequence:

$$
\begin{equation*}
F_{n+2}=1+2^{n-1} \sum_{i=0}^{[(n-1) / 3]}(-1)^{i}\binom{n-1-2 i}{i} 2^{-3 i}, n \geqslant 1 \tag{12}
\end{equation*}
$$

ACKNOWLEDGMENT
I wish to thank the referee and Dr. C. Georghiou for their helpful comments.

REFERENCES

1. P. S..Fisher \& E. E. Koh1becker. "A Generalized Fibonacci Sequence." The Fibonacci Quarterly 10, no. 4 (1972):337-44.
2. H. Gabai. "Generalized Fibonacci K-Sequences." The Fibonacci Quarterly 8. no. 1 (1970):31-38.
3. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: HoughtonMifflin, 1969.
4. V. E. Hoggatt, Jr. 'Convolution Triangles for Generalized Fibonacci Numbers." The Fibonacci Quarterly 8, no. 1 (1970):158-71.
5. A. N. Philippou. Advanced Problem H-322. The Fibonacci Quarterly 19, no. 1 (1981):93.
6. A. N. Philippou \& A. A. Muwafi. "Waiting for the K th Consecutive Success and the Fibonacci Sequence of Order K." The Fibonacci Quarterly 20, no. 1 (1982):28-32.
