ON SOME DIVISIBILITY PROPERTIES OF FIBONACCI AND RELATED NUMBERS
6. V. E. Hoggatt, Jr. Fibonacei and Lucas Numbers. Boston: Houghton Mifflin, 1969; Santa Clara, Calif.: The Fibonacci Association, 1980.
7. G. Kern-Isberner \& G. Rosenberger. 'Über Diskretheitsbedingungen und die diophantische Gleichung $a x^{2}+b y^{2}+c z^{2}=$ dxyz." Archiv der Math. 34 (1980):481-93.
8. G. Rosenberger. "Uber Tschebyscheff-Polynome, Nicht-Kongruenzuntergruppen der Modulgruppe und Fibonacci-Zahlen." Math. Ann. 246 (1980):193203.
9. L. Somer. "The Divisibility Properties of Primary Lucas Recurrences with Respect to Primes." The Fibonacci Quarterly 18, No. 4 (1980):316-34.

$\bullet \diamond \diamond \diamond$

LETTER TO THE EDITOR

JOHN BRILLHART
July 14, 1983

In the February 1983 issue of this Journal, D. H. and Emma Lehmer introduced a set of polynomials and, among other things, derived a partial formula for the discriminant of those polynomials (Vol. 21, no. 1, p. 64). I am writing to send you the complete formula; namely,

$$
D\left(P_{n}(x)\right)=5^{n-1} n^{2 n-4} F_{n}^{2 n-4},
$$

where F_{n} is the nth Fibonacci number. This formula was derived using the Lehmers' relationship

$$
\left(x^{2}-x-1\right) P_{n}(x)=x^{2 n}-L_{n} x^{n}+(-1)^{n},
$$

where L_{n} is the Lucas number. Central to this standard derivation is the nice formula by Phyllis Lefton published in the December 1982 issue of this Journal (Vol. 20, no. 4, pp. 363-65) for the discriminant of a trinomial.

The entries in the Lehmers' paper for $D\left(P_{4}(x)\right)$ and $D\left(P_{6}(x)\right)$ should be corrected to read

$$
2^{8} \cdot 3^{4} \cdot 5^{3} \quad \text { and } \quad 2^{32} \cdot 3^{8} \cdot 5^{5},
$$

respectively.
$\bullet \diamond \diamond \diamond$

