ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY

Please send all communications concerning ADVANCED PROBLEMS and SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, the solutions should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE
H-372 Proposed by M. Wachtel, Zürich, Switzerland
There exist infinitely many sequences, each with infinitely many solutions of the form:

$$
\begin{array}{l||ll}
\underline{A} \cdot x_{1}^{2}+C=\underline{B} \cdot y_{1}^{2} \\
\underline{A} \cdot x_{2}^{2}+C=\underline{B} \cdot y_{2}^{2} \\
\underline{A} \cdot x_{3}^{2}+C=\underline{B} \cdot y_{3}^{2} \\
\ldots \ldots \ldots & \cdots & \underline{C}=L_{n+3} \\
\underline{A} \cdot x_{m}^{2}+C=\underline{B} \cdot y_{m}^{2} & \underline{x_{1}}=1 & \underline{y_{1}}=2 \\
\underline{x_{2}}=F_{n-1} F_{n}+F_{n+1}^{2} & \underline{y_{2}}=2 F_{n+1}^{2} \\
\underline{x_{3}}=2 F_{2 n+4}+(-1)^{n} & \underline{y_{3}}=2 F_{2 n+5}
\end{array}
$$

Find a recurrence formula for $x_{4} / y_{4}, x_{5} / y_{5}, \ldots, x_{m} / y_{m}\left(y_{m}=\right.$ dependent on $\left.x_{m}\right)$.
Examples: $\left(x_{1}-x_{3}\right)$

$n=3$	(in numbers)
$\underline{\underline{F}_{6}} \cdot(1)^{2}+\underline{L_{3}}=\underline{F}_{4} \cdot(2)^{2}$	$8 \cdot 1+\underline{4}=\underline{3} \cdot 2^{2}$
$\overline{F_{6}} \cdot\left(F_{2} F_{3}+F_{4}^{2}\right)^{2}+\overline{L_{3}}=\overline{F_{4}} \cdot\left(2 F_{4}^{2}\right)^{2}$	$\underline{8} \cdot 11^{2}+\underline{4}=\underline{3} \cdot \underline{18} 8^{2}$
$\underline{F_{6}} \cdot\left(2 F_{10}-1\right)^{2}+\underline{L_{3}}=\underline{F_{4}} \cdot\left(2 F_{11}\right)^{2}$	$\underline{8} \cdot 109^{2}+\underline{4}=\underline{3} \cdot 178^{2}$
$n=4$	
$\underline{F}_{7} \cdot(1)^{2}+\underline{L}_{4}=E_{5} \cdot(2)^{2}$	$\underline{13} \cdot 1+\underline{7}=\underline{5} \cdot$
$\overline{F_{7}} \cdot\left(F_{3} F_{4}+F_{5}^{2}\right)^{2}+\overline{L_{4}}=\underline{F_{5}} \cdot\left(2 F_{5}^{2}\right)^{2}$	$\underline{13} \cdot 31^{2}+\underline{7}=\underline{5} \cdot 5$
$\overline{F_{7}} \cdot\left(2 F_{12}+1\right)^{2}+\overline{L_{4}}=\underline{F_{5}} \cdot\left(2 F_{13}\right)^{2}$	$\underline{13} \cdot 289^{2}+\underline{7}=\underline{5} \cdot 466^{2}$

H-373 Proposed by Andreas N. Philippou, University of Patras, Greece
For any fixed integers $k \geqslant 0$ and $r \geqslant 2$, set

$$
f_{n+1, r}^{(k)}=\sum_{\substack{n_{1}, \ldots, n_{k} \ni \\ n_{1}+2 n_{2}+\cdots+n_{k}=n}}\binom{n_{1}+\cdots+n_{k}+r-1}{n_{1}, \ldots, n_{k}, r-1}, n \geqslant 0
$$

Show that

$$
f_{n+1, r}^{(k)}=\sum_{\ell=0}^{n} f_{\ell+1,1}^{(k)} f_{n+1-\ell, r-1}^{(k)}, n \geqslant 0
$$

H-374 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
If $\sigma^{*}(n)$ is the sum of the unitary divisors of n, then

$$
\sigma^{*}(n)=\prod_{p^{e} \|_{n}}\left(1+p^{e}\right),
$$

where p^{e} is the highest power of the prime p that divides n. The ratio $\sigma^{*}(n) / n$ increases as new primes are introduced as factors of n, but decreases as old prime factors appear more often. As N increases, is $\sigma^{*}(N!) / N!$ bounded or unbounded?

H-375 Proposed by Piero Filipponi, Rome, Italy
Conjecture 1
If $F_{k} \equiv 0(\bmod k)$ and $k \neq 5^{n}$, then $k \equiv 0(\bmod 12)$.

Conjecture 2

Let $m>1$ be odd. Then, $F_{12 m} \equiv 0(\bmod 12 m)$ implies either 3 divides m or 5 divides m.

Conjecture 3

Let $p>5$ be a prime such that $p \nmid F_{24}$, then $F_{12 m} \not \equiv 0(\bmod 12 m)$.
Conjecture 4
If $L_{k} \equiv 0(\bmod k)$, then $k \equiv 0(\bmod 6)$ for $k>1$.

SOLUTIONS

Lotta Sequences
H-350 Proposed by M. Wachtel, Zürich, Switzerland (Vol. 21, no. 1, February 1983)

There exist an infinite number of sequences, each of which has an infinite number of solutions of the form:

$$
\begin{array}{ll}
A \cdot x_{1}^{2}+1=5 \cdot y_{1}^{2} & \underline{A}=5 \cdot\left(a^{2}+a\right)+1 \\
A \cdot x_{2}^{2}+1=5 \cdot y_{2}^{2} & \underline{a}=0,1,2,3, \ldots \\
A \cdot x_{3}^{2}+1=5 \cdot y_{3}^{2} & \underline{x_{1}}=2 ; \underline{x}_{2}=40(2 a+1)^{2}-2 \\
\cdots \cdots \cdots \\
A \cdot x_{n}^{2}+1=5 \cdot y_{n}^{2} & \underline{y_{1}}=2 a+1 ; \underline{y}_{2}=(2 a+1) \cdot(16 A+1)
\end{array}
$$

Find a recurrence formula for $x_{3} / y_{3}, x_{4} / y_{4}, \ldots, x_{n} / y_{n}\left(y_{n}=\right.$ dependent on $\left.x_{n}\right)$.

ADVANCED PROBLEMS AND SOLUTIONS

Examples

$$
\begin{aligned}
& \underline{a=0} 1 \cdot\left(\frac{L_{3}}{2}\right)^{2}+1=5 \cdot\left(\frac{E_{3}}{2}\right)^{2} \quad \underline{a=1} 11 \cdot 2^{2}+1=5 \cdot 3^{2} \\
& 1 \cdot\left(\frac{L_{9}}{2}\right)^{2}+1=5 \cdot\left(\frac{F_{9}}{2}\right)^{2} \quad 11 \cdot 358^{2}+1=5 \cdot 531^{2} \\
& 1 \cdot\left(\frac{L_{15}}{2}\right)^{2}+1=5 \cdot\left(\frac{F_{15}}{2}\right)^{2} \quad 11 \cdot 63722^{2}+1=5 \cdot 94515^{2} \\
& 1 \cdot \ldots+1=5 \cdot \ldots \quad 11 \cdot \ldots+1=5 \cdot \ldots \\
& a=5 \quad 151 \cdot 2^{2}+1=5 \cdot 11^{2} \\
& 151 \cdot 4,838^{2}+1=5 \cdot 26,587^{2} \\
& 151 \cdot 11,698,282^{2}+1=5 \cdot 64,287,355^{2} \\
& 151 \ldots+1=5 \ldots
\end{aligned}
$$

Solution by Paul S. Bruckman, Carmichael, CA

The general solution of the Diophantine equation:

$$
\begin{equation*}
5 y^{2}-A x^{2}=1 \tag{1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
x_{n}=\frac{u^{2 n-1}-v^{2 n-1}}{2 \sqrt{A}}, \quad y_{n}=\frac{u^{2 n-1}+v^{2 n-1}}{2 \sqrt{5}}, \quad n=1,2, \ldots, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
u=(2 \alpha+1) \sqrt{5}+2 \sqrt{A}, \quad v=(2 \alpha+1) \sqrt{5}-2 \sqrt{A} \tag{3}
\end{equation*}
$$

Note that $u v=5(2 \alpha+1)^{2}-4\left(5\left(\alpha^{2}+\alpha\right)+1\right)=1$. Also,

$$
u^{2}=5(2 \alpha+1)^{2}+4 A+4(2 a+1) \sqrt{5 A}=8 A+1+4(2 \alpha+1) \sqrt{5 A}
$$

and

$$
\begin{aligned}
u^{4} & =(8 A+1)^{2}+80 A(2 a+1)^{2}+8(2 a+1)(8 A+1) \sqrt{5 A} \\
& =(8 A+1)^{2}+80 A\left(1+\frac{4}{5}(A-1)\right)+2(8 A+1)\left(u^{2}-8 A-1\right) \\
& =-(8 A+1)^{2}+16 A+64 A^{2}+2(8 A+1) u^{2}=2(8 A+1) u^{2}-1
\end{aligned}
$$

Note that v satisfies the same relation. Thus,

$$
\begin{equation*}
w^{4}-2 B w^{2}+1=0 \tag{4}
\end{equation*}
$$

where w denotes either u or v, and $B=8 A+1=40 \alpha^{2}+40 \alpha+9$. From (4), we readily deduce the recursions:

$$
\begin{equation*}
z_{n+2}-2 B z_{n+1}+z_{n}=0, n=1,2, \ldots \tag{5}
\end{equation*}
$$

where z denotes either x or y.
Now, let

$$
\begin{equation*}
r_{n}=\frac{x_{n}}{y_{n}}, n=1,2, \ldots \tag{6}
\end{equation*}
$$

Then, using (5), we obtain:

1984]

$$
r_{n+2}=\frac{2 B x_{n+1}-x_{n}}{2 B y_{n+1}-y_{n}}=\frac{2 B r_{n+1}-\frac{r_{n} y_{n}}{y_{n+1}}}{2 B-\frac{y_{n}}{y_{n+1}}}=r_{n+1}+\frac{\left(r_{n+1}-r_{n}\right) y_{n}}{2 B y_{n+1}-y_{n}}
$$

AdVANCED PROBLEMS AND SOLUTIONS

Hence,
or, equivalently:

$$
\frac{r_{n+1}-r_{n}}{r_{n+2}-r_{n+1}}=2 B \cdot \frac{y_{n+1}}{y_{n}}-1
$$

$$
\begin{equation*}
\frac{y_{n+1}}{y_{n}}=\frac{1}{2 B} \cdot \frac{r_{n+2}-r_{n}}{r_{n+2}-r_{n+1}} . \tag{7}
\end{equation*}
$$

Also, using (5) and (7),

$$
\frac{y_{n+2}}{y_{n+1}}=2 B-\frac{y_{n}}{y_{n+1}}=\frac{1}{2 B} \cdot \frac{r_{n+3}-r_{n+1}}{r_{n+3}-r_{n+2}}
$$

which implies:
or

$$
4 B^{2}-4 B^{2}\left(\frac{r_{n+2}-r_{n+1}}{r_{n+2}-r_{n}}\right)=\frac{r_{n+3}-r_{n+1}}{r_{n+3}-r_{n+2}},
$$

$$
\begin{equation*}
\frac{r_{n+3}-r_{n+1}}{r_{n+3}-r_{n+2}}=4 B^{2}\left(\frac{r_{n+1}-r_{n}}{r_{n+2}-r_{n}}\right) \text {. } \tag{8}
\end{equation*}
$$

Solving for x_{n+3} in (8) yields the desired recursion:

$$
\begin{equation*}
r_{n+3}=\frac{r_{n+1}\left(r_{n+2}-r_{n}\right)-4 B^{2} r_{n+2}\left(r_{n+1}-r_{n}\right)}{r_{n+2}-r_{n}-4 B^{2}\left(r_{n+1}-r_{n}\right)} . \tag{9}
\end{equation*}
$$

Also solved by the proposer.

Hats Off

H-352 Proposed by Stephen Turner, Babson College, Babson Park, MA (Vol. 21, no. 2, May 1983)

One night during a national mathematical society convention, n mathematicians decided to gather in a suite at the convention hotel for an "after hours chat." The people in this group share the habit of wearing the same kind of hats, and each brought his hat to the suite. However, the chat was so engaging that at the end of the evening each (being deep in thought and oblivious to the practical side of matters) simply grabbed a hat at random and carried it away by hand to his room.

Use a variation of the Fibonacci sequence for calculating the probability that none of the mathematicians carried his own hat back to his room.

Solution by J. Suck, Essen, Germany
The problem is Montmort's 1708 "problème des rencontres" (see [1], p. 180) and the required solution is an old hat of Euler's. In [2], he proves by an easy-to-find combinatorial argument that the number D_{n} of derangements (= permutations without fixed point) of $\{1,2, \ldots, n\}$ satisfies the recurrence
and hence,

$$
\begin{gathered}
D_{n+2}=(n+1)\left(D_{n+1}+D_{n}\right), D_{0}=1, D_{1}=0, \\
D_{n+1}=(n+1) D_{n}+(-1)^{n+1} .
\end{gathered}
$$

We can proceed to show by induction, then, the "closed" expression (also known to Euler [3])

$$
D_{n}=n!\sum_{\nu=0}^{n}(-1)^{\nu} / \nu!,
$$

which has to be divided by n ! to get the required probability.
Disclosing that k out of the n gathering mathematicians were members of the Fibonacci Association, one is led to ask a bit more generally for the probability that none at least of that group carried back his own hat. Denote by $D_{n, k}$ the numerator, that is, the number of permutations of $\{1, \ldots, n\}$ with no fixed point in $\{1, \ldots, k\}$. We have

$$
D_{n, k}=\sum_{\nu=k}^{n}\binom{n-k}{v-k} D_{v}=\sum_{\nu=0}^{k}(-1)^{v}\binom{k}{v}(n-v)!
$$

where the right-hand side equality was a recent problem by Wang [4]. It pays to look at the triangular array $D_{n, k}, 0 \leqslant k \leqslant n$. Morgenstern ([5], p. 15, Problem 11) offers the recurrence

$$
D_{n, k}=(n-1) D_{n-1, k-1}+(k-1) D_{n-2, k-2} .
$$

To get started, note that the first two columns are

$$
D_{n, 0}=n!\quad \text { and } \quad D_{n, 1}=(n-1)!(n-1), n \geqslant 1 .
$$

We may also start from Euler's edge with

$$
D_{n, k}=D_{n-1, k}+D_{n, k+1}
$$

n	k	0	1	2	3	4	5
	1						
1	1	0					
2	2	1	1				
3	6	4	3	2			
4	24	18	14	11	9		
5	120	96	78	64	53	44	

Denoting by R_{n} the $n^{\text {th }}$ row sum, we find

$$
R_{n+2}=(n+2)\left(R_{n+1}+R_{n}\right) \quad \text { and } \quad R_{n}=(n+1)!-D_{n+1}
$$

And for the $n^{\text {th }}$ rising diagonal sum $S_{n}:=D_{n, 0}+D_{n-1,1}+\cdots$, we have

$$
S_{n+2}= \begin{cases}S_{n+1}-S_{n}+(n+2)! & \text { for } n \text { even } \\ S_{n+1}+S_{n}+(n+2)!-D_{(n+1) / 2} & \text { for } n \text { odd }\end{cases}
$$

Peeping into the future, we see n growing, so finally, for our probability

$$
\lim _{n \rightarrow \infty} D_{n, k} / n!=\left\{\begin{array}{cl}
1 & \text { if } k \text { remains constant } \\
1 / e & \text { if } n-k \text { does }
\end{array}\right.
$$

References

1. L. Comtet. Advanced Combinatorics. Dordrecht: D. Reidel, 1974.
2. L. Euler. "Solutio quaestionis curiosae ex doctrina combinationum." Leonhardi EuZeri Opera Omnia, Ser. Prima 7:435-40.
3. L. Euler. "Calcul de la probabilité dans le jeu de rencontre." Loc. cit.: 11-25; "Problema de permutationibus." Loc. cit.:542-45.
4. E. T. H. Wang. Elementary Problem E 2947. Amer. Math. Monthly 89 (1982): 334.
5. D. Morgenstern. Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik. Berlin: Springer-Verlag, 1964.

Also solved by P. Bruckman, E. Schmutz and M. Wachtel, N. Saxena and Sridhar Manthani (paper), and the proposer.

Dual Solution

H-353
Proposed by Jerry Metzger, University of North Dakota, Grand Forks, ND (Vol. 21, no. 2, May 1983)

For a positive integer n, describe all two-element sets $\{\alpha, b\}$ for which there is a polynomial $f(x)$ such that $f(x) \equiv 0(\bmod n)$ has solution set exactly $\{a, b\}$.

Solution by L. Kuipers, Switzerland

Let the congruence related to a pair (α, b) be written in the form

$$
\begin{equation*}
(x-a)(x-b) \equiv 0(\bmod n) \tag{1}
\end{equation*}
$$

If a and b are the only solutions of (1), then (α, b) is called an S_{n}-pair, or S-pair. We assume throughout $\alpha \neq b$, and distinguish several cases:
(i) Let $n=p, p$ prime. Then any $\operatorname{pair}(a, b)$ forms a set $\{a, b\}$.
(ii) Let $n=p^{2}, p$ being a prime. Consider the congruence

$$
\begin{equation*}
(x-a)(x-b) \equiv 0\left(\bmod p^{2}\right) \tag{2}
\end{equation*}
$$

Each factor of the left-hand side of (2) if not zero produces at most one factor p. Hence, if $\alpha \not \equiv b(\bmod p)$, then (α, b) is an S-pair. If $\alpha \equiv b(\bmod p)$, then $x \equiv a, x \equiv b\left(\bmod p^{2}\right)$ are not the only solutions of (2). Let $a-b=k p$ $[k \not \equiv 0(\bmod p)]$. Then take $x=a+p$, and substitution in (2) gives

$$
(x-a)(x-b) \equiv p^{2}(1+k) \equiv 0\left(\bmod p^{2}\right)
$$

$$
\begin{equation*}
\text { Let } n=p^{3}, p \text { being a prime. Consider the congruence } \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
(x-a)(x-b) \equiv 0\left(\bmod p^{3}\right) \tag{3}
\end{equation*}
$$

If $a \not \equiv b(\bmod p)$, then (a, b) is an S-pair. If $\alpha \equiv b\left(\bmod p^{2}\right)$, then (α, b) is an S-pair if and only if $p=2$. We have here $a=b+p^{2}$, for in $a-b=k p^{2}$ we have $k<p$. If $p \geqslant 3, a \equiv b\left(\bmod p^{2}\right)$, then there is always a solution of (3) distinct from $x \equiv a$ and $x \equiv b\left(\bmod p^{3}\right)$. Let $a-b=k p^{2}, k<p$. Take $x=$ $a+p^{2}$, then

$$
(x-a)(x-b) \equiv p^{2}\left(p^{2}+k p^{2}\right) \equiv 0\left(\bmod p^{3}\right)
$$

So (α, b) is not an S-pair.
If $a \equiv b(\bmod p)$, or $a-b=k p$, then, taking $x=a+p^{2}$, we have to take $k=1$. In these cases, (a, b) is not an S-pair.
(iv) Let $n=p^{4}, p$ being a prime. Consider the congruence

$$
\begin{equation*}
(x-a)(x-b) \equiv 0\left(\bmod p^{4}\right) \tag{4}
\end{equation*}
$$

If $a \not \equiv b(\bmod p)$, then (a, b) is an S-pair. Let $a \equiv b(\bmod p)$, or $a-b=k p$ ($k<p^{3}$). Now take $x=a+p^{3}$ in (4).

$$
(x-a)(x-b)=p^{2}\left(p^{2}+k p\right) \equiv 0\left(\bmod p^{3}\right)
$$

One then obtains $p^{3}\left(p^{3}+k p\right) \equiv 0\left(\bmod p^{4}\right)$.
In general, if $n=p \quad(k \geqslant 5), p$ being a prime, then $a \not \equiv b(\bmod p)$ yields the sets $\{a, b\}$, while $x=a+p^{k-1}$ gives a third solution to the congruence $(x-a)(x-b) \equiv 0\left(\bmod p^{k}\right)$ if $a-b \equiv 0(\bmod p)$.
(v) Let $n=p q ; p, q$ being primes, $(p, q)=1$. Consider the congruence

$$
\begin{equation*}
(x-\alpha)(x-b) \equiv 0(\bmod p q) \tag{5}
\end{equation*}
$$

For a solution of (5), one factor of the left-hand side of (5) must produce p and the second one the factor q. So, consider the system

$$
\begin{align*}
& x \equiv \alpha(\bmod p) \\
& x \equiv b(\bmod q) . \tag{6}
\end{align*}
$$

Let $q b_{1} \equiv 1(\bmod p), p b_{2} \equiv 1(\bmod q)$. Then a solution of (6) is given by

$$
x_{0}=q b_{1} a+p b_{2} b(\bmod p q)
$$

Now $x_{0} \equiv \alpha(\bmod p q)$ implies $\alpha \equiv b(\bmod q)$, and conversely. Thus, if $\alpha \equiv b$ (mod $p)$, then (a, b) is an S-pair, and if $a \equiv b(\bmod q)$, then (a, b) is an S-pair.

Now, assume $a \not \equiv b(\bmod p), a \not \equiv b(\bmod q)$. There are integers x and y such that $x p+y q=1$. Hence, $a-b=(a-b) x p+(a-b) y q$ or $a-b=k p+\ell q$ or $a-k p=b+l q$. Thus, $a-k p$ is another solution of (5), as can be seen by substitution.
(vi) Let $n=m_{1} m_{2},\left(m_{1}, m_{2}\right)=1$. Consider the congruence

$$
\begin{equation*}
(x-\alpha)(x-b) \equiv 0\left(\bmod \left(m_{1} m_{2}\right)\right) . \tag{7}
\end{equation*}
$$

For an extra solution of (7), it is sufficient that the first factor of the left-hand side of (7), i.e., $(x-\alpha)$, is a multiple of m_{1} and the second one is divisible by m_{2}. So consider the system

$$
\begin{align*}
& x \equiv a\left(\bmod m_{1}\right) \tag{8}\\
& x \equiv b\left(\bmod m_{2}\right) .
\end{align*}
$$

Let $m_{2} b_{1} \equiv 1\left(\bmod m_{1}\right), m_{1} b_{2} \equiv 1\left(\bmod m_{2}\right)$.
Then a solution of (8) is given by

$$
x_{0}=m_{2} b_{1} a+m_{1} b_{2} b\left(\bmod m_{1} m_{2}\right) .
$$

Now, $x_{0} \equiv a\left(\bmod m_{1} m_{2}\right)$ implies $a \equiv b\left(\bmod m_{2}\right)$, and conversely. Also $x_{0} \equiv b(\bmod$ $m_{1} m_{2}$) implies $a \equiv \bar{b}\left(\bmod m_{1}\right)$. Hence, if $a \equiv b\left(\bmod m_{2}\right)$, then (a, b) is an $S-$ pair; if $a \equiv b\left(\bmod m_{2}\right)$, then (a, b) is an S-pair.

Assume now that $m_{1} \nmid a-b$ and $m_{2} \nmid a-b$. There are integers x and y such that $x m_{1}+y m_{2}=1$. Hence,

$$
a-b=(a-b) x m_{1}+(a-b) y m_{2}=k m_{1}+l m_{2} \quad \text { or } a-k m_{1}=b+l m_{2}
$$

Thus, $a-k m_{1}$ is another solution of (7) as follows by substitution.
(vii) After the preceding cases, it is not difficult to deal with the general case

$$
n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{t}^{r_{t}} .
$$

As soon as $a-b$ is divisible by $p_{i}^{r_{i}}$, we have an S-pair, and if $p_{i}^{r_{i}} \nmid a-b$, $i=1,2, \ldots, t$, then there are, besides a and b, extra solutions of the involved congruence.
Also solved by the proposer.

Not for Squares

H-354 Proposed by Paul Bruckman, Concord, CA (Vol. 21, no. 2, May 1983)

Find necessary and sufficient conditions so that a solution in relatively prime integers x and y can exist for the Diophantine equation:

ADVANCED PROBLEMS AND SOLUTIONS

$$
a x^{2}-b y^{2}=c
$$

given that a, b, and c are pairwise relatively prime positive integers, and moreover, a and b are not both perfect squares.

Solution by M. Wachtel, Zürich, Switzerland
1.1 In conformity with Problem H-350, which represents a special case of H-354, the following symbolism is used:

$$
\begin{array}{ll}
A \cdot x_{1}^{2}+C=B \cdot y_{1}^{2} & A, B, \text { and } C=\text { constant values } \\
A \cdot x_{2}^{2}+C=B \cdot y_{2}^{2} & A, B=\text { relatively prime } \\
\cdots \cdots & C=\text { dependent on } A \text { and } B \\
A \cdot x_{n}^{2}+C=B \cdot y_{n}^{2} & C, x, y=\text { reciprocally dependent }
\end{array}
$$

1.2 These infinite sequences consist of an undeterminable number of groups and classes. Considering the limited space available, only main fragments of the whole issue can be dealt with here.
2.1 First, we have to determine the desired C and the least x_{1} and y_{1} for a given A and B.
2.2 As to C, we have to distinguish between:
a) $\underline{C}=1,2$, a prime, a double prime, or a quadruple prime. Then, only one sequence exists, containing all terms possible.
b) If C is one of the remaining composite numbers, then two or more sequences exist. No term in a sequence is identical to a term in another sequence.
2.3 To determine x_{2}, y_{2}, there does not (presumably) exist a general formula, but an undeterminable number of different construction rules, according to the group or class to which the sequence belongs. When both x_{1}, y_{1} and x_{2}, y_{2} are found, all other terms are determined. See Section 3 below.
3.1 For $x_{3}, y_{3}, x_{4}, y_{4}, \ldots, x_{n}, y_{n}$, the following procedure leads to a recurrence formula which comprehends the whole of the terms in integers that are possible.
3.2 The following applies if: $A<B$.
$\underline{3.3}$ Let: $x_{2}-x_{1}=\underline{u}$ and $y_{2}-y_{1}=\underline{v}$.
3.4 Divide \underline{u} and \underline{v} by their greatest common divisor \underline{d} and let:

$$
\frac{u}{d}=\underline{U} \quad \text { and } \quad \frac{v}{d}=\underline{V} .
$$

$\underline{U}, \underline{V}=$ auxiliary constants relatively prime.
3.5 Let: $U \cdot y_{1}-V \cdot x_{1}=\underline{D}$. Now, let

$$
\frac{x_{1}+x_{2}}{D}=\underline{F} \quad \text { and } \quad \frac{y_{1}+y_{2}}{D}=\underline{G} .
$$

$\underline{F}, \underline{G}=$ auxiliary constants.

```
3.6 Further, 1et: \(U \cdot y_{1}+V \cdot x_{1}=S_{1}\)
    \(U \cdot y_{2}+V \cdot x_{2}=S_{2}\)
    ....
    \(U \cdot y_{n}+V \cdot x_{n}=S_{n}\)
```

3.7 and we obtain the recurrence formula:

$$
\begin{array}{ll}
x_{3}=F \cdot S_{1}+x_{1} & y_{3}=G \cdot S_{1}-y_{1} \\
x_{4}=F \cdot S_{2}+x_{2} & y_{4}=G \cdot S_{2}-y_{2} \\
\ldots & \ldots \\
x_{n}=F \cdot S_{n-2}+x_{n-2} & y_{n}=G \cdot S_{n-2}-y_{n-2}
\end{array}
$$

3.8 The auxiliary constants U, V and F, G hold also for any C in a sequence corresponding to A, B. That means it suffices to choose an arbīrary \underline{C} (fitted to A, B) to determine U, V and F, G for any sequence A, B.
3.9 If $A>B$, the procedure is similar to that of 3.2 but is omitted here to conserve space.
3.10 Examples (for the sake of brevity and lucidity, the constants A, B, and \bar{C} are listed only once, and the power " 2 " above x and y is omitted throughout).
3.11 Example I: $\underline{A}=21, \underline{B}=31, \underline{C}=19$ (= prime, one sequence only, see 2.2a).
$\begin{array}{r}21 \cdot 6\left(x_{1}\right) \\ 130\left(x_{2}\right)\end{array} \quad \underline{u}=124 \quad \underline{d}=2($ see 3.4$) \quad \underline{v}=102 \quad \underline{31} \cdot 5\left(y_{1}\right)$

Example II: $\underline{A}=21, \underline{B}=31, \underline{C}=82$ (see $\underline{2.2}$ a)

23	$\left(x_{1}\right)$	
147	$\left(x_{2}\right)$	31
79,957	$\left(x_{3}\right)$	121
510,113	$\left(x_{4}\right)$	65,809

ADVANCED PROBLEMS AND SOLUTIONS

3.12 Example III: $\underline{A}=6, \underline{B}=41, \underline{C}=1001$ (=composite number $=7 \cdot 11 \cdot 13$ yields four different sequences, see $2 . \overline{2} \mathrm{~b}), x_{1}, x_{2}, x_{3}$.

5. Apart from other formulas for x_{2}, y_{2}, based on other values of \mathbb{C}, there exist those construction rules for groups (e.g., Problem H-350, and the problem based on F / L numbers I submitted in July 1982). However, this would be a field with no end, thus Problem H-354 has no general solution.

