ON THE NUMBERS OF THE FORM $a n^{2}+b n$

SHIRO ANDO
Hosei University, Koganei-shi, Tokyo 184, Japan

(Submitted December 1982)

It is clear that for any given positive integer N there are infinitely many square numbers which can be represented as the difference of square numbers in at least N different ways.

For instance, if $n=4 p_{1} p_{2} \ldots p_{r}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are the smallest r odd primes such that $r \geqslant \log _{2} N$, then for each subset S of $\{1,2,3, \ldots, r\}, n^{2}$ has the expression

$$
n^{2}=\left(h^{2}+k^{2}\right)^{2}-\left(h^{2}-k^{2}\right)^{2}
$$

where

$$
h=2 \prod_{i \in S} p_{i}, k=\prod_{i \in \bar{S}} p_{i},
$$

with the convention that an empty product means 1 and the notation \bar{S} for the complement of S, giving $2^{r} \geqslant N$ distinct expressions.

Thus, we can choose n in such a way that

$$
\begin{equation*}
n=O\left(e^{c \log N \log \log N}\right) \tag{1}
\end{equation*}
$$

for large values of N, where c is a constant.
In this paper we prove a similar theorem concerning the sequence of numbers $A_{n}=a n^{2}+b n$ for any integers α and b with $\alpha>0$, which includes the earlier result [1] as the special case of $N=2$.

Theorem

For any given positive integer N, there exist an infinite number of A_{n} 's which can be expressed as the difference of two numbers of the same type in at least N different ways. We can choose an n for each N in such a way that it satisfies (1) as N tends to infinity.

Proof: It is enough to prove that for any sufficiently large N, there is an A_{n} which has at least N such expressions. Since

$$
\begin{equation*}
A_{n}=A_{h}-A_{k} \tag{2}
\end{equation*}
$$

is equivalent to

$$
n(a n+b)=(h-k)(a h+a k+b)
$$

in order to get the expression (2) for given n, it is sufficient to find a decomposition of n into two factors s and t; $n=s t$, for which

$$
\begin{equation*}
h-k=s, a(h+k)+b=t(a n+b) \tag{3}
\end{equation*}
$$

has positive integral solutions h and k.
Let $p_{1}, p_{2}, \ldots, p_{r}$ be the smallest r distinct prime numbers in the arithmetic progression consisting of positive integers congruent to 1 modulo 2α, and let

$$
n=2 p_{1} p_{2} \cdots p_{r}
$$

For each proper subset S of $\{1,2, \ldots, p\}$, there corresponds a distinct decomposition of n into two factors

$$
s=2 \prod_{i \in S} p_{i} \quad \text { and } \quad t=\prod_{i \in \bar{S}} p_{i}
$$

where t can be expressed as $t=1+2 \alpha u$ for a positive integer u, and we have

$$
h+k=s t+2 u(a n+b)
$$

from the second equation of (3).
If n is sufficiently large so that it will satisfy $a n+b>0$, then Eq. (3) gives distinct pairs h, k for different decompositions $n=s t$ of n.

In this case, however, two different h 's may give the same A_{h} if b / a is a negative integer. Since at most four pairs of h, k give the same expression, we have at least N distinct expressions (2) of A_{n} if r satisfies

$$
2^{r}-1 \geqslant 4 N
$$

and N is sufficiently large so that corresponding n will satisfy $a n+b>0$.
If we take r that satisfies

$$
\log _{2}(4 N+1) \leqslant r<\log _{2}(4 N+1)+1
$$

then for large values of N we have

$$
\log n=\log 2+\log p_{1}+\cdots+\log p_{r}=O\left(p_{r}\right)=O(r \log r)
$$

from which we obtain

$$
n=O\left(e^{c \log N \log \log N}\right)
$$

for a constant c, completing the proof.
If we do not care about the size of n, we can take simpler forms for s and t in (3); if b / a is not a negative integer,

$$
s=2(1+2 \alpha)^{i}, t=(1+2 \alpha)^{N-i},(i=1,2, \ldots, N-1)
$$

give N distinct expressions of the form (2) for h and k determined by (3), and if b / a is a negative integer, N will be substituted by $4 N$.

These results apparently cover the case of polygonal numbers of any order.

Examples

For tiagonal numbers $t_{n}=\frac{1}{2}\left(n^{2}+n\right)$, we have $t_{n}=t_{n}-t_{k}$, where
$n=2 \times 3^{N}, \quad h=3^{i}+3^{2 N-i}+\frac{1}{2}\left(3^{N-i}-1\right), \quad k=-3^{i}+3^{2 N-i}+\frac{1}{2}\left(3^{N-i}-1\right)$
for $i=1,2, \ldots, N-1$.
For hexagonal numbers $h_{n}=2 n^{2}-n$, we have $h_{n}=h_{h}-h_{k}$, where
$n=2 \times 5^{N}, \quad h=5^{i}+5^{2 N-i}-\frac{1}{4}\left(5^{N-i}-1\right), k=-5^{i}+5^{2 N-i}-\frac{1}{4}\left(5^{N-i}-1\right)$
for $i=1,2, \ldots, N-1$.

REFERENCE

1. S. Ando. "On a System of Diophantine Equations Concerning the Polygonal Numbers." The Fibonacci Quarterty 20, no. 4 (1982):349-53.
