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1. INTRODUCTION 

In many communication and signal-processing systems, desired signals (se-
quences) are embedded in noise. Linear filters have been the primary tool for 
smoothing or recovering the desired signal from the degraded signal. Linear 
filters perform particularly well where the spectrum of the desired signal is 
significantly different from that of the interference. In many situations, 
however, the spectrum of the signal and of the noise are mixed in the same range 
and the performance of linear filters is very poor. Median filters can be used 
to circumvent these problems. Tukey [1] is generally credited with the idea of 
introducing nonlinear filters based on moving sample medians of the input sig-
nal. In this paper, we do not address the filtering problem, but we analyze 
the signal (sequence) set of median filtered binary sequences. To best explain 
the goal of this paper, the implementation of the median filter is described 
first. 

To begin, take a binary sequence of length n; across this signal we slide 
a window that spans 2s - 1 samples of the binary sequence, for s = 2, 3, ... . 
At each point of the sequence, the median of the samples within the window of 
the filter is computed and the output of the filter at the center sample is set 
equal to the computed median. To account for start-up and end effects at the 
two endpoints of the n-length sequence, s - 1 samples are appended to the be-
ginning and end of the sequence. The value of the appended samples to the be-
ginning is equal to the value of the first sample; similarly, the value of the 
appended samples to the end of the sequence equals the value of the last sample 
of the sequence. Figure 1(a) shows a binary signal of length 10 being filtered 
by a filter of window of size 3. The filtered signal is shown below. The ap-
pended samples are shown as crosses (X). Figure 1(b) shows the same sequence 
filtered by a filter of window size 5. Figure 1(c) shows similar results with 
a larger window. An interesting observation is that there exist sequences that 
are not modified by the median filter. Moreover, it has been shown that any 
finite input sequence, after repeated median filtering, will be reduced to one 
of these invariant sequences [2]. A sequence that is not modified by the fil-
tering process is called a "root" sequence. The following theorem provides the 
upper bound on the number of successive filter passes necessary to reduce an 
input sequence to a root sequence [2]: 

Theorem 

Upon successive median filter passes, any nonroot sequence will become a 
root sequence after a maximum of (n - 2)/2 successive filterings, where n is the 
sequence length. 

If we observe the structure of binary root sequences, we can see that they con-
sist of identically-valued segments of at least s samples. These segments of 
at least s consecutive equal-valued samples are called "constant neighborhoods." 
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FIGURE 1. Signal Filtered by Three Different Median Filters: 
(a) S = 2 (b) S = 3 (c) S = 4 

Any sequence that does not consist only of constant neighborhoods will be modi-
fied by the filter. As an example, consider a window of size 3 (i.e., s = 2); 
if a sequence contains the segment "...11011...," then, clearly, this sequence 
will be modified when the window is centered at the "0" sample. In this case, 
the shortest constant neighborhood we can have is two. 

The problem addressed in this paper is concerned with the binary root se-
quence space of median filters. In particular, for a median filter of window 
size 2s - 1, how many possible binary root sequences can we have for a given 
sequence length? For instance, for a window of size 3 and sequence length 4, 
the only possible root sequences are: 

sequence 1 
sequence 2 
sequence 3 
sequence 4 
sequence 5 
sequence 6 
sequence 7 
sequence 8 
sequence 9 
sequence 10 

There are only 10 possible root sequences of length 4, compared to 16 possible 
binary sequences we can obtain if no restriction is imposed on the sequences. 
Thus, for a particular window size and sequence length n, we are interested in 
finding R(n), the number of possible root signals. 

0 0 0 0 
0 0 0 1 
1 0 0 0 
1 1 0 0 
0 0 1 1 
0 1 1 0 
1 0 0 1 
1 1 1 0 
0 1 1 1 
1 1 1 1 
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2. TREE STRUCTURE FOR A WINDOW OF SIZE THREE 

Consider a window of size 3 (s = 2). As mentioned above, the minimum con-
stant neighborhood for this filter is 2. Now, Let us build a root signal (a 
signal that will not be modified by the filter). The first sample can take any 
arbitrary values; for purposes of illustration, let us choose the first sample 
to be a "0." Next, for filtering purposes, we append a sample to the left of 
the first "0" sample. So far the sequence is "0 0" (appended + root sequence). 
The second sample of the sequence can be either a "0" or a "1." Let us pick a 
"1" for the second sample; the entire sequence is now: "001." The third sam-
ple of the root sequence (fourth of the entire sequence) is of decisive impor-
tance; if we let it be a "1," the entire sequence would consist of two differ-
ent constant neighborhoods satisfying the property of being invariant to the 
filter. On the other hand, if we let the third sample be a "0," then a non-
allowed structure occurs and the resultant sequence would be affected by the 
filter. Figure 2 shows every allowable path that the root signal can take* 

FIGURE 2. Tree Structure for a Filter of Window Size 3 

These paths branch in a tree structure fashion. If we take a close look at the 
tree structure, we can distinguish that sections of the tree repeat themselves 
as the tree propagates. This observation gives us the concept of the existence 
of discrete states. As is shown next, this is in fact true. These states are 
shown in Figure 2 and are denoted A, B9 C, and D. Each state is determined by 
a sequence to two consecutive digits; for the filter of size 3, these states 
are: 

A = {0, 0}, B = {0, 1}, C = {1, 0}, D = {1, 1}. 
Figure 2 shows how these states propagate as the sequence length increases. 
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Each state will generate other states; this can be seen in Figure 3, where a 
state transition diagram shows the state propagation. Notice that states B and 
C have only one allowable path. The nonallowed path is denoted by the "sink" 
in Figure 3. State A generates another state A plus a state 5, state B gener-
ates a state D only, state C generates a state1 A, and finally state D generates 
a state D and a state C. Notice that the pattern of growth is predictable, in 
other words, given the number of states A, B, C,D at a given stage of the tree, 
we can predict the number of ASB, C,D states at the next stage. Let n denote 
the nth stage (root sequence of length ri) , and let A(n) be the number of A states 
that the tree structure has at this nth stage. From the properties of the 
states, previously mentioned, we can write: 

A(n + 1) = Ain) + C(n) (1) 
Bin + 1) = Ain) 
C(n + 1) = D(n) 
Bin + 1) = B{n) + Bin). 

sink 

State Diagram 
Window = 3 

FIGURE 3. State Diagram for a Filter with Window Size 3 

Refer to the tree structure in Figure 2 and randomly select any stage, say stage 
3. At that stage, we have two A states, two D states, one C state, and one B 
state; a total of 6 states (6 branches or possible roots). For a sequence of 
length 4, we have 10 states (or 10 possible root sequences). In general, the 
number of root sequences at the n stage is simply 

Rin) = Ain) + Bin) + C(n) + Din), (2) 

and at the n + 1 stage is 
•Rin + i ) = Ain + 1) + Bin + 1) + C(n + 1) + Din + 1 ) . 

Replacing (1) into (2), we obtain the recursive expression for Rin + 1): 

Rin + 1) = 2Ain) + 2D(n) + C(n) + Bin), (3) 

with the initial conditions Ail) = 5(2) = C(2) = D(2) = 1. Using this expres-
sion, a recursion table for the number of different states and number of roots 
is obtained and shown in Table 1. 

Although the recursion table gives us a way to obtain the number of roots 
at any sequence length,a closed form solution for Rin) is more desirable. From 
(3) and (2), we obtain 

Rin + 1) = Rin) + Ain) + Din), (4) 

but, referring to the state diagram, 
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TABLE 1 

Recurs ion Table for R(n), Window = 3 

Sequence 
Length n 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

A(n) 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

Bin) 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

C{n) 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

D(n) 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

R(n) 

4 
6 
10 
16 
26 
42 
68 
110 
178 
288 

A(n) = i4(n - 1) + Cin - 1), 
and, 

D(n) = 5(n - D + 5(n - 1). 

Replacing these expressions for A(n) and £>(n) into (4), we obtain 

R(n + 1) = R(n) + R(n - 1). 

We have obtained a difference equation for the number of roots of a binary se-
quence for a filter with window size 3 and initial conditions 

i?(l) = 2 and i?(2) = 4. 

The solution is simply R(n) = 2F(n + 1), where F(n) is the Fibonacci sequence 

F(n) . — ^ — 2 — J - ^—2—y J' for n > K 

3. TREE STRUCTURE FOR THE GENERAL WINDOW 

Let us see what happens if we increase the window size to 5; later on we 
will generalize the window size to 2s - 1. For this window, the minimum con-
stant neighborhood length is 3. By using the same procedure as before, we ob-
tain a tree structure for this size window and it is shown in Figure 4. The 
difference between the tree structures for the filters of size 3 and 5 is that 
for the latter we have two similar states B and two similar states C. For the 
filter with window size 5, the states are specified as follows: 

A = {0, 0, 0}, B\ = {0, 0, 1}, B2 - {0, 1, l}, 

CI = {1, 1, 0}, C2 = {1, 0, 0}, and D = {1, 1, l}. 

The similarity between states CI and C2 is that both sequences start a neigh-
borhood of value "0," the difference is in that CI is a delay state (will gen-
erate a state C2 only). Similar observations can be made for states 51 and 52. 
Figure 5 shows the state diagram for the filter of size 5, and the delay states 
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Tt_?U 

FIRST DIGIT DIGIT 2 ' DIGIT 3 " DIGIT 4 ' 

FIGURE 4. Tree Structure for a Filter with Window Size 5 

can clearly be seen there. From the state diagram, we obtain the recursive 
expressions: 

As before, 

A(n) = A(n - 1) + C2(n - 1) 
Bl(n) = Ain - 1) 
B2(n) = Bl(n - 1) 
Clin) = B{n - 1) 
Clin) = Clin - 1) 

Bin) = Bin - 1) + 52(n - 1). 

Rin) = Ain) + Blin) + 52(n) + CI in) + C2(n) + Bin), 

(5) 

(6) 

sink 

State Diagram 
Window = 5 

FIGURE 5* State Diagram for a Window of Size 5 

Substituting (5) into (6), and after some manipulations, we find that 

Rin + 1) = i?(n) + Rin - 2). (7) 

Naturally, for a given sequence length, the number of roots decreases as we 
increase the window size. We have seen that, if we increase the window size, 
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only delay states are added to the state diagram. Although by following the 
same procedure we could obtain the difference equation for larger window sizes, 
a general recursive expression for a general size filter is a more convenient 
result. This relation will be obtained next. 

Figure 6(a) shows a state diagram for a filter of arbitrary window size 
2s - 1. The dotted line separates the diagram in odd symmetric parts. The odd 
symmetric correspondence is not only in a position sense, but in the multipli-
city of the given states also (i.e., # of Bl states = # of (71 states, etc.). 
States Bi and Ci are delay states (each Ci or Bi state will be transformed into 
only one other state as we move along the diagram). On the other hand, states 
A and D not only have the previous property, but, also, they will generate an-
other state of their own kind. Hence, for this 2s - 1 window size filter, the 
number of roots is 

R(n) = A(n) + Bl(n) + B2(n) + ... + B[s - I] in) (8) 

+ (71 (n) + Clin) + ••• + C[s - I] in) + Din), 
and 

A(n) = D(n) 
Bl(n) = A(n - 1) 
B2(n) = A{n - 2) (9) 

B[s - l](n) = A(n - [s - 1]) 
Clin) = Blin) 
Clin) = Blin) 

C[s - l](n) = B[s - l](n). 

Therefore, i?(n) can be represented in terms of a recursion relation of the A 
states only. It is important to recall that s is the minimum constant neigh-
borhood for a window of size 2s - 1. We find that i?(n) can be written as 

s-l 

R(n) = 2 £>(n - 1). (10) 
i = 0 

Let us now describe some properties of the multiplicity of A states. Refer to 
the state diagram for the general window size filter, Figure 6(a). Think of 
the state diagram as describing the propagation of particles in space. [Par-
ticles in Figure 6(a, b, c) are shown as XTs.) A particle at point A represents 
a state A; if at a given time there would be 5 particles at point D, this would 
imply that there would be 3 states D, and so on. At a sequence of length 1, we 
have 1 state A and 1 state D; this is shown in Figure 6(a). Increasing the se-
quence length to 2, state will generate another state A and also generates a 
state Bl. Similarly, state D generates a state D and also a state CI. As we 
can see in Figure 6(b), with a sequence of length 2, the number of states is 
the same as it was at a sequence of length 1. The states generated at point D 
move toward point A; this process goes on until the first state generated at 
point D gets to point A. As we can see in Figure 6(c), when the first particle 
generated by D reaches the A point, a particle in point A not only generates a 
new state A by itself, but also, it receives another state from the particle 
that has propagated from state A along points (71, CI, ..., C[s - 1], In other 
words, point A has to wait s discrete intervals until the number of states in 
that location increases by the number of particles at point D, s intervals ago. 
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sink 
(a) Signal Length = 1 

Part ic les (X) at points A and D. 

(b) Signal Length = 2 
(sink omitted) 

(c) Signal Length = 5 + 1 
(sink omitted) 

FIGURE 6. State Propagation for a Fil ter with Window Size 2s - 1 

Since the number of particles at the D point is the same as the number of par-
t ic les at the A point at any time, the previous observation can be written as 

A(n) = A(n - 1) + A{n - n). (11) 
Replacing (11) into (10), we find, after some manipulations, that 

R(n) = R{n - 1) + R(n - s) (12) 

is the recursive expression for the number of root sequences of a filter with 
window size 2s - 1, for any sequence length n. Letting 

R(n + i - 1) = xi{n), (13) 

we can see from (12) and (13) that 

x1(n + 1) = x2(n) 

x2(n + 1 ) = x3(n) 

xs_1(n + 1) = xs(n) (14) 

xs (n + 1) = xs(n) + xx(n). 

We can represent (14) in vector notation as 

X(n + 1) = AX(n), (15) 
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where 
X(n) = [^(n), x2(n), . .., xs(n)]T, 

and where A is the bottom companion matrix: 

0 1 0 ... 0 0 0 
0 0 1 0 0 0 

0 0 0 
0 0 0 
1 0 0 

0 1 0 
0 0 1 
0 0 0 

From (13), R(n) = [1, 0, 0, ..., 0]X(n) , where X(n) is the solution of (15), 

X(n) = AnX(0), (17) 

and where X(0) are the initial conditions obtained from the tree structure or 
recursion table; hence, 

R(n) - [1, 0, 0, ..., 0]AnX(0). (18) 

The characteristic equation of the A matrix in (16) is obtained to be 

1 = 0. (19) 

With the help of SturmTs theorem [3], we can show that (19) does not have re-
peated eigenvalues; hence, we can find R(n) from (18) as 

R(n) = [1, 0, 0, ..., 0]MDnM"1X(0), (20) 

where M is the matrix that diagonalizes A as M'^AM = D. In this case, 

and 

M 

D 

1 

*1 

X, 0 

(21) 

1 

X2 

A * - 1 K'1 

1 

K 
(22) 

where X19 ..., X8 are the s distinct eigenvalues of A. Replacing (21) and (22) 
into (20), we obtain the general solution for R(n): 

R(n) = [X19 X2, ..., X ] M - 1 X ( 0 ) . 

k. CONCLUSION 

We have developed a tree structure for the root sequence set of median fil-
ters of binary signals. This structure has the characteristic that the number 
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of branches it has at each stage is described by a simple recursive expression. 
In the case of the filter with window= 3, the number of branches is related to 
the Fibonacci sequence. In general, it is shown that the number of roots i?(n) 
for a sequence of length n and window size 2s - 1 is represented by the recur-
rence relation 

R(n) = R(n - 1) + R(n - s). 
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