A MODIFIED TRIBONACCI SEQUENCE

IAN BRUCE

St. Peter's Collegiate School, Stonyfell, S. Australia
(Submitted November 1982)

1. INTRODUCTION

The Tribonacci sequence [1] is generated by the recurrence relation

$$
\begin{align*}
& U_{n+3}=U_{n+2}+U_{n+1}+U_{n}, \tag{1}\\
& \text { with } U_{0}=0, \text { and } U_{1}=U_{2}=1
\end{align*}
$$

Part of the charm of the original Fibonacci sequence $\left\{F_{n}\right\}$ is the ease with which new relations can be found, and a wealth of applications. However, (1) is rather unweildy and does not yield relations too readily. This article suggests a modification so that a development analogous to the Fibonacci sequence can be made. In addition, higher-order sequences can be constructed.

2. RECURRENCE RELATIONS FOR THE MODIFIED TRIBONACCI SEQUENCE

Consider $\left\{T_{n}\right\}$ generated by the recurrence relation

$$
\begin{align*}
T_{2 n} & =T_{2 n-1}+T_{2 n-3}, \tag{2a}\\
T_{2 n+1} & =T_{2 n-1}+T_{2 n-2}, \tag{2b}
\end{align*}
$$

where $n>2$, and $T_{1}=T_{2}=T_{3}=1$.
The numerical sequence that emerges using (2a) and (2b) is:

$$
1,1,1,2,2,3,4,6,7,11,13,20,24,37,44,68,81, \ldots
$$

Note that $\left\{T_{n}\right\}$ resembles $\left\{F_{n}\right\}$ in its mode of definition.
However, successively odd and even terms are defined separately-note also that each odd term is the sum of the three previous odd terms, and, similarly, for the even terms. In this latter respect, the sequence resembles Tribonacci.

$$
\text { 3. SOME PROPERTIES OF }\left(T_{n}\right)
$$

We can now go on to develop properties of $\left\{T_{n}\right\}$, some of which are analogous in form to $\left\{F_{n}\right\}$. These are presented without proof, as they are all elementary; no claim to completenes of the list is made.

$$
\begin{align*}
& T_{2 n+5}=T_{2 n+3}+T_{2 n+1}+T_{2 n-1}, n \geqslant 2 ; \tag{3}\\
& T_{2 n+6}=T_{2 n+4}+T_{2 n+2}+T_{2 n}, n \geqslant 2 ; \tag{4}\\
& T_{2}+T_{4}+\cdots+T_{2 n}=T_{2 n+3}-1, n \geqslant 2 ; \tag{5}\\
& T_{1}+T_{3}+\cdots+T_{2 n-1}=\left(T_{2 n}+T_{2 n+2}-1\right) / 2, n \geqslant 2 ; \tag{6}\\
& T_{2 n+1}^{2}-T_{2 n-1}^{2}=T_{2 n+2} \cdot T_{2 n-2}, n \geqslant 2 ; \tag{7}\\
& T_{2} T_{6}+T_{4} T_{8}+\cdots+T_{2 n-2} \cdot T_{2 n+2}=T_{2 n+1}^{2}-1, n \geqslant 2 ; \tag{8}\\
& T_{1} T_{3}+T_{3} T_{5}+T_{5} T_{7}+\cdots+T_{2 n+1} \cdot T_{2 n+3}=\left(T_{2 n+4}^{2}+T_{2 n+2}^{2}-1\right) / 4, \tag{9}
\end{align*}
$$

> A MODIFIED TRIBONACCI SEQUENCE
> $T_{2 n+2}^{2}+T_{2 n-2}^{2}=2\left(T_{2 n+1}^{2}+T_{2 n-1}^{2}\right), n \geqslant 2$.

$$
\text { 4. A GENERATING FUNCTION FOR }\left\{T_{n}\right\}
$$

A generating function corresponding to the development in [2] is now presented. We first consider the odd and even series separately:
$F_{\mathrm{e}}(x)=1+T_{2} x^{2}+T_{4} x^{4}+T_{6} x^{6}+T_{8} x^{8} \ldots$ when the subscript is even
and
$F_{0}(x)=T_{1} x+T_{3} x^{3}+T_{5} x^{5}+T_{7} x^{7}+T_{9} x^{9} \ldots$ when the subscript is odd.
Therefore,

$$
\begin{equation*}
\left(1-x^{2}-x^{4}-x^{6}\right) \cdot F_{\mathrm{e}}(x)=1-x^{6} \text {, by (4) } \tag{12}
\end{equation*}
$$

or
$F_{\mathrm{e}}(x)=\left(1-x^{6}\right) /\left(1-x^{2}-x^{4}-x^{6}\right)$ when the subscript is even.
Similarly, we have

$$
\begin{align*}
& F_{0}(x)=x /\left(1-x^{2}-x^{4}-x^{6}\right), \text { by }(3), \text { when the subscript is odd. Hence, } \\
& F(x)=\left(1+x-x^{6}\right) /\left(1-x^{2}-x^{4}-x^{6}\right) \tag{13}
\end{align*}
$$

is the required generating function.

5. AN ALTERNATIVE PRESENTATION

Consider the original Fibonacci sequence $\left\{F_{n}\right\}$, with

$$
F_{0}=0 \quad \text { and } \quad F_{1}=1
$$

then

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, n \geqslant 0 \tag{14}
\end{equation*}
$$

It is well known that if
then

$$
\begin{equation*}
x^{2}=1+x \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
x^{n+1}=F_{n-1}+F_{n} x . \tag{16}
\end{equation*}
$$

We see that the Fibonacci sequence is generated in this way. Similarly, we can generate $\left\{T_{n}\right\}$ by considering

$$
\begin{equation*}
x^{3}=T_{1}+T_{2} x+T_{3} x=1+x+x^{2} \tag{17}
\end{equation*}
$$

This gives

$$
\begin{align*}
& x^{4}=T_{3}+T_{4} x+T_{5} x^{2} \tag{18}\\
& x^{5}=T_{5}+T_{6} x+T_{7} x^{2}
\end{align*}
$$

leading to

$$
\begin{equation*}
x^{n+3}=T_{2 n+1}+T_{2 n+2} x+T_{2 n+3} x^{2}, n \geqslant 2 . \tag{19}
\end{equation*}
$$

6. GENERALIZATIONS

By considering the method of Section 5 applied to

$$
\begin{equation*}
x^{4}=1+x+x^{2}+x^{3} \tag{20}
\end{equation*}
$$

we can construct the sequence $\{Q\}$, defined by

$$
\begin{equation*}
Q_{1}=Q_{2}=Q_{3}=Q_{4}=1 \tag{21}
\end{equation*}
$$

and (for $n \geqslant 1$),

$$
\begin{align*}
& Q_{3 n+2}=Q_{3 n+1}+Q_{3 n-2}, \tag{22}\\
& Q_{3 n+3}=Q_{3 n+1}+Q_{3 n-1}, \\
& Q_{3 n+4}=Q_{3 n+1}+Q_{3 n} .
\end{align*}
$$

1eading to

$$
\begin{equation*}
X^{n+4}=Q_{3 n+1}+Q_{3 n+2} x+Q_{3 n+3} x^{2}+Q_{3 n+4} x^{3} \tag{23}
\end{equation*}
$$

This sequence has the form

$$
\begin{equation*}
1,1,1,1,2,2,2,3,4,4,6,7,8,12,14,15,23,27, \ldots \tag{24}
\end{equation*}
$$

We note that three Fibonacci-1ike recurrence relations are interwoven, and the feature

$$
\begin{equation*}
Q_{3 n}=Q_{3 n-3}+Q_{3 n-6}+Q_{3 n-9}+Q_{3 n-12}, n \geqslant 4, \tag{25}
\end{equation*}
$$

is retained. Further properties of this sequence can then be considered, as well as higher-order sequences.

REFERENCES

1. Mark Feinberg. "Fibonacci-Tribonacci." The Fibonacci Quarterly 1, no. 3 (1963): 71-74.
2. W. R. Spickerman. "Binet's Formula for the Tribonacci Sequence." The Fibonacci Quarterly 20, no. 2 (1982):118-20.
