ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
Assistant Editors
gLORIA C. PADILLA and CHARLES R. WALL

Please send all communications regarding ELEMENTARY PROBLEMS and SOLUTIONS to PROFESSOR A. P. HILLMAN; 709 Solano Dr., S.E.; Albuquerque, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date. Proposed problems should be accompanied by their solutions.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

Also, α and β designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$ 。

PROBLEMS PROPOSED IN THIS ISSUE

B-526 Proposed by L. Cseh and I. Merenyi, Cluj, Romania
Find all ordered pairs (m, n) of positive integers for which there is an integer x satisfying the equation

$$
F_{m} F_{n} x^{2}-\left[F_{m}\left(F_{m}, F_{n}\right)+F_{n} F_{(m, n)}\right] x+\left(F_{m}, F_{n}\right) F_{(m, n)}=0
$$

Here (r, s) denotes the greatest common divisor of r and s.
B-527 Proposed by L. Cseh and I. Merenyi, Cluj, Romania
Do as in B-526 with the equation replaced by

$$
\left(F_{m}, F_{n}\right) x^{2}-\left(F_{m}+F_{n}\right) x+F_{(m, n)}=0
$$

B-528 Proposed by Herta T. Freitag, Roanoke, VA
For nonnegative integers n, prove that

$$
\sum_{i=0}^{2 n+1}\binom{2 n+1}{i} F_{i+1}^{2}=5^{n} F_{2 n+3}
$$

ELEMENTARY PROBLEMS AND SOLUTIONS

B-529 Proposed by Herta T. Freitag, Roanoke, VA
For positive integers n, find a compact form for $\sum_{i=0}^{2 n}\binom{2 n}{i} F_{i+1}^{2}$.
B-530 Proposed by Michael Eisenstein, San Antonio, $T X$
Let $\alpha=(1+\sqrt{5}) / 2$. For n an odd positive integer, prove that the continued fraction

$$
L_{n}+\frac{1}{L_{n}+\frac{1}{L_{n}+\cdots}}=\alpha^{n} .
$$

B-531 Proposed by Michael Eisenstein, San Antonio, $T X$
For n an even positive integer, prove that

$$
L_{n}-\frac{1}{L_{n}-\frac{1}{L_{n}-\cdots}}=\alpha^{n} .
$$

SOLUTIONS
Even Sum of Fibonacci Products
B-502 Proposed by Herta T. Freitag, Roanoke, VA
Given that h and k are integers with $h+k$ an integral multiple of 3 , prove that $F_{k} F_{k-h-1}+F_{k+1} F_{k-h}$ is even.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
Letting $t=n+1$ in (I_{26})—see p. 59 of Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Boston: Houghton Mifflin Co., 1969) -yields the following identity:

$$
\begin{equation*}
F_{m+t}=F_{m+1} F_{t}+F_{m} F_{t-1} . \tag{*}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
F_{k} F_{k-h-1}+F_{k+1} F_{k-h} & =F_{k+1} F_{k-h}+F_{k} F_{k-h-1} \\
& =F_{k+(k-h)}[\text { by }(*)] \\
& =F_{2 k-h} \\
& =F_{3 k-(h+k)} .
\end{aligned}
$$

Because $h+k$ is a multiple of 3 , 3 divides $3 k-(h+k)$, hence $2=F_{3}$ divides $F_{3 k-(h+k)}$.

Also solved by Wray G. Brady, Paul S. Bruckman, L. Cseh, M. J. DeLeon, C. Georghiou, Walther Janous, L. Kuipers, Graham Lord, I. Merenyi, Bob Prielipp, HeinzJürgen Seiffert, Sahib Singh, and the proposer.

Even Perfect Numbers Mod 7

B-503 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Prove that every even perfect number except 28 is congruent to 1 or -1 modulo 7.

Solution by L. Cseh, Cluj, Romania
It is well known that every even perfect number is of the form

$$
2^{p-1}\left(2^{p}-1\right)
$$

where p is prime and so is $\left(2^{p}-1\right)$. Every prime, except 3 is of the form

$$
3 k+1 \text { or } 3 k+2
$$

Thus, we have

$$
\begin{aligned}
2^{3 k}\left(2^{3 k+1}-1\right) & \equiv 1 \cdot(1 \cdot 2-1) \equiv 1(\bmod 7) \\
2^{3 k+1}\left(2^{3 k+2}-1\right) & \equiv 2 \cdot(4-1) \equiv 6 \equiv-1(\bmod 7)
\end{aligned}
$$

and because for $p=3$ we obtain 28 , the proof is complete.
Also solved by Paul S. Bruckman, M. J. DeLeon, Herta T. Freitag, C. Georghiou, Walther Janous, H. Klauser and M. Wachtel, L. Kuipers, Graham Lord, I. Merenyi, Bob Prielipp, Sahib Singh, and the proposer.

Triangular Fibonacci Numbers Mod 24
B-504 Proposed by Charles R. Wall
Prove that if n is an odd integer and F_{n} is in the set $\{0,1,3,6,10, \ldots\}$ of triangular numbers, then $n \equiv \pm 1(\bmod 24)$.

Solution by Leonard Dresel, University of Reading, England
If F_{n} is in the set of triangular numbers, then there is an integer k such that $F_{n}=\frac{1}{2} k(k+1)$, so that $8 F_{n}+1=(2 k+1)^{2}$ is a perfect square. Reducing this modulo 9, we have

$$
8 F_{n}+1 \text { is a quadratic residue modulo } 9
$$

The Fibonacci sequence reduced modulo 9 is periodic with period 24 , and for the odd integers n, we have

$$
\begin{array}{rl}
n & \equiv 1 \\
\equiv & 3 \\
5 & 7 \\
9 & 11 \\
1 & 13 \\
1 & 15 \\
1 & 17 \\
1 & 19 \\
2 & 21 \\
2 & 23
\end{array}(\bmod 24)
$$

By squaring the numbers $0,1,2,3$, and 4 , we find that the quadratic residues modulo 9 are $0,1,4,7$. Hence, the only quadratic residue in the sequence for $8 F_{n}+1(\bmod 9)$ is the number 0 , and this occurs only for $n \equiv \pm 1$ (mod 24).

We can extend this result in various ways. For example, by reducing the sequence $8 F_{n}+1$ modulo 11 , we obtain the further condition $n \equiv \pm 1$ (mod 10).

Also solved by Paul S. Bruckman and the proposer.
Sum of Lucas Products
B-505 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
N=N(m, a)=L_{m-2 a} L_{m}-L_{m+1-2 a} L_{m-1}
$$

where m and a are positive integers. Prove or disprove that N is: (a) always
(exactly) divisible by 5; (b) never divisible by 3, 4, 6, 7, 8, 9, or 11 ; and (c) divisible by 10 if $\alpha \equiv 2(\bmod 3)$.

Solution by C. Georghiou, University of Patras, Greece
When L_{n} is replaced by $\alpha^{n}+\beta^{n}$, we get

$$
N=L_{m-2 a} L_{m}-L_{m+1-2 a} L_{m-1}=(-1)^{m}\left(L_{2 a}+L_{2 a-2}\right)=(-1)^{m} 5 F_{2 a-1} ;
$$

therefore, N is divisible by 5.
Next, we take the following properties of the Fibonacci numbers as known (otherwise, they can easily be established):

$$
\begin{array}{llll}
F_{n} \equiv 0(\bmod 3) & \text { iff } & n \equiv 0(\bmod 4) \\
F_{n} \equiv 0(\bmod 4) & \text { iff } & n \equiv 0(\bmod 6) \\
F_{n} \equiv 0(\bmod 7) & \text { iff } & n \equiv 0(\bmod 8) \\
F_{n} \equiv 0(\bmod 11) & \text { iff } & n \equiv 0(\bmod 10) \\
F_{n} \equiv 0(\bmod 2) & \text { iff } & n \equiv 0(\bmod 3) \tag{5}
\end{array}
$$

Now (1) $\Rightarrow N \not \equiv 0(\bmod 3$ or $\bmod 6$ or $\bmod 9)$,
(2) $\Rightarrow N \not \equiv 0(\bmod 4$ or $\bmod 8)$,
(3) $\Rightarrow N \not \equiv 0(\bmod 7)$,
(4) $\Rightarrow N \not \equiv 0(\bmod 11)$, and finally,
(5) $\Rightarrow N \equiv 0(\bmod 10)$ iff $2 \alpha-1 \equiv 0(\bmod 3)$ or $\alpha \equiv 2(\bmod 3)$.

Also solved by Paul S. Bruckman, L. Cseh, M. J. DeLeon, Walther Janous, L. Kuipers, Graham Lord, Bob Prielipp, Sahib Singh, and the proposer.

Fibonacci and Lucas Convolutions

B-506 Proposed by Heinz-Jürgen Sieffert, student, Berlin, Germany
Let $G_{n}=(n+1) F_{n}$ and $H_{n}=(n+1) L_{n}$. Prove that:
(a) $\sum_{k=0}^{n} G_{k} G_{n-k}=\frac{(n+2)(n+3)}{30} H_{n}-\frac{2}{25} H_{n+2}+\frac{4}{25} F_{n+3}$;
(b) $\sum_{k=0}^{n} H_{k} H_{n-k}=\frac{(n+2)(n+3)}{6} H_{n}+\frac{2}{5} H_{n+2}-\frac{4}{5} F_{n+3}$.

Solution by Paul S. Bruckman, Fair Oaks, CA
Let

$$
\begin{align*}
& U(x)=x /\left(1-x-x^{2}\right)=\frac{1}{\sqrt{5}}\left((1-\alpha x)^{-1}-(1-\beta x)^{-1}\right)=\sum_{n=0}^{\infty} F_{n} x^{n} ; \tag{1}\\
& V(x)=(2-x) /\left(1-x-x^{2}\right)=P+Q=\sum_{n=0}^{\infty} L_{n} x^{n},
\end{align*}
$$

where

$$
P=(1-\alpha x)^{-1} \quad \text { and } \quad Q=(1-\beta x)^{-1}
$$

Also, let

$$
\begin{equation*}
A(x)=(x U(x))^{\prime}, B(x)=(x V(x))^{\prime} . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
A(x)=\sum_{n=0}^{\infty} G_{n} x^{n}, B(x)=\sum_{n=0}^{\infty} H_{n} x^{n} . \tag{3}
\end{equation*}
$$

ELEMENTARY PROBLEMS AND SOLUTIONS

Note that $(x P)^{\prime}=P^{2},(x Q)^{\prime}=Q^{2}$. Hence,

$$
\begin{equation*}
A(x)=5^{-1 / 2}\left(P^{2}-Q^{2}\right), B(x)=P^{2}+Q^{2} . \tag{4}
\end{equation*}
$$

Let

$$
\begin{equation*}
R(x)=P^{4}+Q^{4}, S(x)=P^{2} Q^{2} . \tag{5}
\end{equation*}
$$

Then

$$
R(x)=\sum_{n=0}^{\infty}\binom{n+3}{3}\left(\alpha^{n}+\beta^{n}\right) x^{n}
$$

or

$$
\begin{equation*}
R(x)=\frac{1}{6} \sum_{n=0}^{\infty}(n+2)(n+3) H_{n} x^{n} . \tag{6}
\end{equation*}
$$

A1so,

$$
\begin{aligned}
S(x) & =\left(1-x-x^{2}\right)^{-2}=\frac{1}{4}(U(x)+V(x))^{2} \\
& =\frac{1}{4}\left\{\left(1+5^{-1 / 2}\right) P+\left(1-5^{-1 / 2}\right) Q\right\}^{2}=\frac{1}{5}\left\{\alpha^{2} P^{2}+2 P Q+\beta^{2} Q^{2}\right\} ;
\end{aligned}
$$

hence,

$$
\begin{aligned}
5 S(x) & =\alpha^{2} P^{2}+U(x)+V(x)+\beta^{2} Q^{2} \\
& =\sum_{n=0}^{\infty}(n+1) L_{n+2} x^{n}+\frac{2}{\sqrt{5}}(\alpha P-\beta Q) \\
& =\sum_{n=0}^{\infty}\left\{(n+1) L_{n+2}+2 F_{n+1}\right\} x^{n} \\
& =\sum_{n=0}^{\infty}\left\{(n+3) L_{n+2}+2\left(F_{n+1}-L_{n+2}\right)\right\} x^{n},
\end{aligned}
$$

or

$$
\begin{equation*}
S(x)=\frac{1}{5} \sum_{n=0}^{\infty}\left(H_{n+2}-2 F_{n+3}\right) x^{n} . \tag{7}
\end{equation*}
$$

Now,

$$
(A(x))^{2}=\left(\sum_{n=0}^{\infty} G_{n} x^{n}\right)^{2}=\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} G_{k} G_{n-k} ;
$$

also, however, from (4) and (5), $5(A(x))^{2}=R(x)-2 S(x)$. Using (6) and (7):

$$
\sum_{k=0}^{n} G_{k} G_{n-k}=\frac{1}{30}(n+2)(n+3) H_{n}-\frac{2}{25}\left(H_{n+2}-2 F_{n+3}\right),
$$

or

$$
\begin{equation*}
\sum_{k=0}^{n} G_{k} G_{n-k}=\frac{1}{30}(n+2)(n+3) H_{n}-\frac{2}{25} H_{n+2}+\frac{4}{25} F_{n+3} \tag{8}
\end{equation*}
$$

Likewise,

$$
\begin{aligned}
(B(x))^{2} & =\left(\sum_{n=0}^{\infty} H_{n} x^{n}\right)^{2}=\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} H_{k} H_{n-k}=R(x)+2 S(x) \\
& =\frac{1}{6} \sum_{n=0}^{\infty}(n+2)(n+3) H_{n} x^{n}+\frac{2}{5} \sum_{n=0}^{\infty}\left(H_{n+2}-2 F_{n+3}\right) x^{n},
\end{aligned}
$$

so

$$
\begin{equation*}
\sum_{k=0}^{n} H_{k} H_{n-k}=\frac{1}{6}(n+2)(n+3) H_{n}+\frac{2}{5} H_{n+2}-\frac{4}{5} F_{n+3} . \tag{9}
\end{equation*}
$$

Also solved by C. Georghiou, L. Kuipers, J. Suck, Gregory Wulczyn, and the proposer.

ELEMENTARY PROBLEMS AND SOLUTIONS

Mixed Convolution

B-507 Proposed by Heinz-Jürgen Sieffert, Berlin, Germany
 formulas in B-506.

Solution by Paul S. Bruckman, Fair Oaks, CA
We follow the notation introduced in the solution to B-506, and note that

On the other hand,

$$
A(x) B(x)=\sum_{n=0}^{\infty} G_{n} x^{n} \cdot \sum_{n=0}^{\infty} H_{n} x^{n}=\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} G_{k} H_{n-k} \cdot
$$

$$
\begin{aligned}
A(x) B(x) & =5^{-1 / 2}\left(P^{4}-Q^{4}\right)=5^{-1 / 2} \sum_{n=0}^{\infty}\binom{n+3}{3}\left(\alpha^{n}-\beta^{n}\right) x^{n} \\
& =\frac{1}{6} \sum_{n=0}^{\infty}(n+2)(n+3) G_{n} x^{n} .
\end{aligned}
$$

Hence,

$$
\sum_{k=0}^{n} G_{k} H_{n-k}=\frac{1}{6}(n+2)(n+3) G_{n} .
$$

Also solved by C. Georghiou, L. Kuipers, J. Suck, Gregory Wulczyn, and the proposer.
(Continued from page 272)
3. A. F. Horadam. "Geometry of a Generalized Simson's Formula." The Fibonacci Quarterly 20, no. 2 (1982):164-68.
4. A. G. Shannon \& A. F. Horadam. "Infinite Classes of Sequence-Generated Circles." The Fibonacci Quarterly (to appear).
5. L. G. Wilson. "Fibonacci Sequences." Private communication, 1982.

