SOME IDENTITIES ARISING FROM THE FIBONACCI NUMBERS
 OF CERTAIN GRAPHS

GLENN HOPKINS and WILLIAM STATON
University of Mississippi, University, MS 38677 (Submitted December 1982)

Tichy and Prodinger [5] have defined the Fibonacci number of a graph G to be the number of independent vertex sets I in G; recall that I is independent if no two of its vertices are adjacent. Following Tichy and Prodinger, we denote the Fibonacci number of G by $F(G)$. If k is a nonnegative integer, we will denote the k-element independent vertex sets in G by $F_{k}(G)$. It is clear that $\sum F_{k}(G)=F(G)$. Kreweras [4] (see also [3]) has introduced the notion of the Fibonacci polynomial,

$$
F(x)=\sum_{k \geqslant 0}\binom{n-k}{k} x^{k} .
$$

We define the more general concept of the Fibonacci polynomial of a graph G, denoted $F_{G}(x)$. In case G is a path on n vertices,

$$
F_{G}(x)=\sum_{k \geqslant 0}\binom{n-k+1}{k} x^{k},
$$

which closely resembles Kreweras' polynomial. Before defining $F_{G}(x)$, we compute $F_{k}\left(P_{n}\right), P_{n}$ the path on n vertices, and $F_{k}\left(C_{n}\right), C_{n}$ the cycle on n vertices.

Proposition 1
(i) $F_{0}\left(P_{n}\right)=1$;

$$
\begin{align*}
& \text { (ii) } F_{1}\left(P_{n}\right)=n \text {; } \\
& \text { iii) } F_{k}\left(P_{n+1}\right)=F_{k}\left(P_{n}\right)+F_{k-1}\left(P_{n-1}\right) \text { for } 1 \leqslant k \leqslant\left[\frac{n+2}{2}\right] \text {; } \tag{iii}
\end{align*}
$$

(iv) $F_{k}\left(P_{n}\right)=\binom{n-k-1}{k}$ for $0 \leqslant k \leqslant\left[\frac{n+1}{2}\right]$.

Proof: The first two statements are obvious. To verify (iii), consider
 those that do not. Finally, (iv) may be verified using (iii) and induction on n. 뜽

Proposition 1 provides a natural graph-theoretic interpretation of the well-known formula

$$
\sum_{k \geqslant 0}\binom{n-k+1}{k}=F_{n+1}
$$

the $n+1^{\text {th }}$ Fibonacci number. The right side of the equality is the number of independent sets of a path with n vertices. The left side is the sum over all k of the number of k-element independent sets. The following proposition will enable us to give an analogous identity involving Lucas numbers, and a graphtheoretic interpretation of that identity.

Proposition 2
(i) $\quad F_{0}\left(C_{n}\right)=1$;
(ii) $\quad F_{1}\left(C_{n}\right)=n$;
(iv) $F_{k}\left(C_{n}\right)=\frac{n}{k}\binom{n-k-1}{k-1}$ for $1 \leqslant k \leqslant\left[\frac{n}{2}\right]$ and $n \geqslant 3$.

Proof: Again, the first two statements are obvious. To verify (iii), fix a vertex x in C_{n}. Consider those k-element independent sets that contain x and those that do not; use (iv) of Proposition 1. To verify (iv), we use (iii) :

$$
\begin{aligned}
F_{k}\left(C_{n}\right) & =F_{k}\left(P_{n-1}\right)+F_{k-1}\left(P_{n-3}\right) \\
& =\binom{n-k}{k}+\binom{n-k-1}{k-1} \\
& =\frac{n}{k}\binom{n-k-1}{k-1} .
\end{aligned}
$$

We now use Proposition 2 to obtain an identity analogous to that following Proposition 1. L_{n} denotes the $n^{\text {th }}$ Lucas number.

Proposition 3
For $n \geqslant 3,1+\sum_{k \geqslant 1} \frac{n}{k}\binom{n-k-1}{k-1}=L_{n}$.
Proof: The right side is the number of independent sets in C_{n} (see [5]). The left side is the sum over k of the number of k-element independent subsets.

We now pause to establish some notation and state a definition. If G and H are graphs, we will denote by $G \cdot H$ the standard composition or lexicographic product (see [1]). That is, $G \cdot H$ is the graph constructed by replacing each vertex v of G by an isomorphic copy H_{v} of H, and by joining each vertex of H_{v} to each vertex of H_{w} whenever v is adjacent to w in G. We define the Fibonacci polynomial of G, F_{G}, by $F_{G}(x)=F\left(G \cdot k_{x}\right)$ for positive integers x. As usual, k_{x} is the complete graph on x vertices. That F_{G} is a polynomial follows from the next proposition.

Proposition 4

Let G be a graph, and let $F_{k}=F_{k}(G)$ for $k \geqslant 0$. Then $F_{G}(x)=\sum_{k \geqslant 0} F_{k} x^{k}$.
Proof: To obtain a k-element independent set in $G \cdot k_{x}$, one must first choose a k-element independent set in G, and then choose one of the x vertices in each of the k chosen copies of k_{x}.

The study of the Fibonacci polynomial of G thus reduced to the study of the coefficients $F_{k}(G)$. For example, the constant term of $F_{G}(x)$ is 1 , the linear term is $n x$, and the coefficient of x^{2} is $\binom{n}{2}-m$, where m is the number of edges of G. The degree of $F_{G}(x)$ is the independence number of G, that is, the number of vertices in the largest independent set.

We obtain some combinatorial identities by expanding the Fibonacci polynomials of paths and cycles.

Theorem 5

Let x be a positive integer, and let n be a nonnegative integer. Let ℓ be $\frac{1}{2}(1 \pm \sqrt{1+4 x})$. Then,

$$
\sum_{k \geqslant 0}\binom{n-k+1}{k} x^{k}=\frac{1}{2 l-1}\left(l^{n+2}-(1-\ell)^{n+2}\right) .
$$

Proof: We compute the Fibonacci polynomial of P_{n} in two ways. First, use Proposition 4 and Proposition 1 to get

$$
\sum_{k \geqslant 0}\binom{n-k+1}{k} x^{k}
$$

As a second approach, we derive and solve a second-order linear recursion for $a_{n}=F\left(P_{n} \circ k_{x}\right)$. Clearly, $a_{0}=1$ and $a_{1}=x+1$. Divide the independent sets in $P_{n} \circ k_{x}$ into those that contain a vertex in the last stalk and those that do not. There are $x a_{n-2}$ of the first type, and a_{n-1} of the second type. Hence, $a_{n}=a_{n-1}+x a_{n-2}$. This recursion has characteristic equation $\lambda^{2}-\lambda-x=0$. Solving this equation, subject to the initial conditions, yields

$$
a_{n}=F\left(P_{n} \circ k_{x}\right)=\frac{1}{2 \ell-1}\left(\ell^{n+2}-(1-\ell)^{n+2}\right) .
$$

Note that the identity in Theorem 5 is true for infinitely many values of x. Hence, it is in fact true for all complex numbers x. The same remark applies to the following theorem.

Theorem 6

Let x be a positive integer, and let n be a nonnegative integer. Let ℓ be $\frac{1}{2}(1 \pm \sqrt{1+4 x})$. Then,

$$
1+\sum_{k \geqslant 1} \frac{n}{k}\binom{n-k-1}{k-1} x^{k}=\ell^{n}+(1-\ell)^{n}
$$

Proof: We compute the Fibonacci polynomial of C_{n} in two ways. First, we use Propositions 2 and 4 to get

$$
1+\sum_{k \geqslant 1} \frac{n}{k}\binom{n-k-1}{k-1} x^{k} .
$$

Now we use Theorem 5. Let S be a fixed stalk in $C_{n} \circ k_{x}$. Divide the independent sets in $C_{n} \circ k_{x}$ into those that contain a vertex in S and those that do not. There are

$$
x\left(\frac{1}{2 l-1}\right)\left(\ell^{n-1}-(1-\ell)^{n-1}\right)
$$

independent sets of the first type and

$$
\frac{1}{2 \ell-1}\left(\ell^{n+1}-(1-\ell)^{n+1}\right)
$$

of the second type. Adding, and substituting $x=\ell^{2}-\ell$ yields the theorem.
The identity of Theorem 5 is known. See, for example, [2, p. 76]. But our approach seems to provide a new interpretation for this identity. We believe
that new identities may be obtained by expanding Fibonacci polynomials of graphs.

ACKNOWLEDGMENT

We wish to thank the referee for his helpful suggestions about this paper.

References

1. Mehdi Behzad, Gary Chartrand, \& Linda Lesniak-Foster. Graphs and Digraphs. New York: Prindle, Weber and Schmidt, 1979.
2. Louis Comtet. Advanced Combinatorics. Dordrecht-Holland: D. Reide1, 1974.
3. P. Flajolet, J. C. Raoult, \& J. Vuillemin. "The Number of Registers Required for Evaluating Arithmetic Expressions." Theoretical Computer Science 9 (1979):99-125.
4. G. Kreweras. "Sur les eventails de segments." Cahiers B.U.R.O. 15 (1970): 1-41.
5. Helmut Prodinger \& Robert F. Tichy. "Fibonacci Numbers of Graphs." The Fibonacci Quarterly 20 (1982):16-21.
