A NOTE ON SOMER'S PAPER ON LINEAR RECURRENCES

ERNST S. SELMER
University of Bergen, 5014 Bergen, Norway
(Submitted January 1983)

In a recent paper [1], Somer uses the second-order linear recursion relation

$$
\begin{equation*}
s_{n+2}=a s_{n+1}+b s_{n}, a, b \in Z, \tag{1}
\end{equation*}
$$

to generate higher-order linear recurrences. The purpose of this note is to extend Somer's results. In what follows, the notation in [1] is used without further comment.

We assume $\alpha \beta \neq 0, \alpha / \beta$ not a root of unity, and ask under what conditions the rational sequence

$$
\begin{equation*}
\left\{t_{n}\right\}_{n=0}^{\infty}=\left\{s_{n k} / s_{n}\right\}_{n=0}^{\infty} \tag{2}
\end{equation*}
$$

satisfies a linear recursion relation of minimal order k.
Somer gives the solution $\left\{s_{n}\right\}=\left\{u_{n}\right\}$, where $u_{0}=0, u_{1}=1$. We can argue similarly for $\left\{s_{n}\right\}=\left\{v_{n}\right\}$, where $v_{0}=2, v_{1}=\alpha$, and $v_{n}=\alpha^{n}+\beta^{n}$, in the case when k is odd. Then

$$
t_{n}=\frac{v_{n k}}{v_{n}}=\frac{\alpha^{n k}+\beta^{n k}}{\alpha^{n}+\beta^{n}}=\sum_{i=0}^{k-1} \alpha^{(k-1-i) n}(-1)^{i} \beta^{i n}
$$

is a rational integer, and $\left\{t_{n}\right\}$ clearly satisfies the same $k^{\text {th }}$-order linear recursion relation as $\left\{w_{n}\right\}=\left\{u_{n k} / u_{n}\right\}$. The proof of the minimality runs as for $\left\{\omega_{n}\right\}$: In the first matrix factor of $D_{k}\left(\omega_{n}, 0\right)$, we just change the sign of every odd-numbered column.

The general solution $s_{n} \neq s_{1} u_{n}$ of (1) may be written as

$$
s_{n}=\frac{A \alpha^{n}+B \beta^{n}}{A+B},
$$

if we "normalize" to $s_{0}=1$. The above result for $\left\{v_{n}\right\}$ then follows from the fact that $-B / A=-1$ is a primitive square root of unity. In general, put $-B / A$ $=\rho$, where ρ is a primitive $m^{\text {th }}$ root of unity, and assume that

$$
k \equiv 1(\bmod m) .
$$

Then

$$
t_{n}=\frac{s_{n k}}{s_{n}}=\frac{\alpha^{n k}-\rho \beta^{n k}}{\alpha^{n}-\rho \beta^{n}}=\frac{\alpha^{n k}-\left(\rho \beta^{n}\right)^{k}}{\alpha^{n}-\rho \beta^{n}}=\sum_{i=0}^{k-1} \alpha^{(k-1-i) n} \rho^{i} \beta^{i n} .
$$

The question of minimality is settled as above: To obtain $D_{k}\left(t_{n}, 0\right)$, we multiply the successive columns of the first matrix factor of $D_{k}\left(w_{n}, 0\right)$ by 1 , $\rho, \rho^{2}, \ldots, \rho^{k-1}$, respectively.

For $m>2$, however, the rationality of $\left\{s_{n}\right\}$ imposes severe conditions. In particular,

$$
s_{1}=\frac{A \alpha+B \beta}{A+B}=\frac{\alpha-\rho \beta}{1-\rho}
$$

should be rational, showing that $\rho=\sqrt[m]{1}$ must be a quadratic irrationality, so $m=3,4$, or 6 . But even in these cases, we get conditions on the coefficients a and b.

A NOTE ON SOMER'S PAPER ON LINEAR RECURRENCES

We illustrate the method in the case $m=4, \rho= \pm i$. With

$$
\alpha=\frac{a+\sqrt{D}}{2}, \quad \beta=\frac{a-\sqrt{D}}{2}, D=a^{2}+4 b,
$$

this gives $s_{1}=(\alpha \pm i \sqrt{D}) / 2$, which is rational if and only if $D=-c^{2}, c \in Z$. Then

$$
s_{1}=\frac{a+c}{2}=\frac{v_{1}+c u_{1}}{2} \quad\left(\text { and } \quad s_{0}=\frac{v_{0}+c u_{0}}{2}=1\right) .
$$

To get b integral, both α and c must be even. To get $\alpha \beta \neq 0$ and α / β not a root of unity, we must have $\alpha c \neq 0$ and $a \neq \pm c$. Consequently, we have shown that if

$$
c \varepsilon Z, b=-\frac{a^{2}+c^{2}}{4}, 2|a, 2| c, a c \neq 0, a \neq \pm c
$$

then the integral sequence

$$
\left\{s_{n}\right\}_{n=0}^{\infty}=\left\{\frac{v_{n}+c u_{n}}{2}\right\}_{n=0}^{\infty}
$$

has the property (2) when $k \equiv 1(\bmod 4)$.
We only state the corresponding results for $m=3$ and $m=6$. Let

$$
c \varepsilon Z, b=-\frac{a^{2}+3 c^{2}}{4}
$$

a and c be of the same parity, $a c \neq 0, a \neq \pm c, \pm 3 c$. Then the following integral sequences have the property (2):

$$
\begin{aligned}
& \left\{s_{n}\right\}_{n=0}^{\infty}=\left\{\frac{v_{n}+c u_{n}}{2}\right\}_{n=0}^{\infty} \text { if } k \equiv 1(\bmod 3), \\
& \left\{s_{n}\right\}_{n=0}^{\infty}=\left\{\frac{v_{n}+3 c u_{n}}{2}\right\}_{n=0}^{\infty} \text { if } k \equiv 1(\bmod 6) .
\end{aligned}
$$

REFERENCE

1. L. Somer. "The Generation of Higher-Order Linear Recurrences from SecondOrder Linear Recurrences." The Fibonacci Quarterly 22, no. 2 (1984):98100.
