INFINITE CLASSES OF SEQUENCE-GENERATED CIRCLES

A. G. SHANNON

The N.S.W. Institute of Technology, Sydney, 2007, Australia

A. F. HORADAM

University of New England, Armidale, 2351, Australia

and

GERALD E. BERGUM South Dakota State University, Brookings, SD 57007-1297 (Submitted November 1982)

1. INTRODUCTION

In a previously published paper on the geometry of a generalized Simson's formula, Horadam [2] considered the loci in the Euclidean plane satisfied by points whose Cartesian coordinates are pairs of consecutive elements of a generalized Fibonacci sequence. A Simson's formula as generalized by Horadam [1] was employed in obtaining the loci.

In this paper, we also utilize the same Simson's formula to develop a generalized "Fibonacci circle"; that is, we show how the locus of a point generated by three consecutive elements of the generalized Fibonacci sequence $\{w_n\}$, defined below, approximates a circle for large n, subject to special restrictions.

We define the sequence $\{w_n\}$ by

$$w_{n+2} = pw_{n+1} - qw_n, \quad w_0 = a, \quad w_1 = b, \quad (1.1)$$

where α , b, p, and q belong to some number system but are usually thought of as integers [1].

It is common knowledge that the terms of $\{w_n\}$ are related to the roots of the equation

$$\lambda^2 - p\lambda + q = 0. \tag{1.2}$$

We denote the roots by

$$\alpha = \frac{p + \sqrt{p^2 - 4q}}{2}$$
 and $\beta = \frac{p - \sqrt{p^2 - 4q}}{2}$

and assume throughout the remainder of this paper that

- (a) $p^2 > 4q$, (b) $p^2 - 4q \neq t^2$ (c) $|q| \leq 1$ (1.3)
- (d) $\alpha < 1 + \sqrt{2}$
- (e) $\{w_n\}$ is strictly increasing.

Now $\alpha\beta = q$, so parts (c) and (d) of (1.3) tell us that $|\beta| < 1$. Therefore, from Horadam [1, 3.1], we know

$$\lim_{n \to \infty} \frac{w_n}{w_{n-1}} = \alpha.$$
(1.4)

1984]

247

INFINITE CLASSES OF SEQUENCE-GENERATED CIRCLES

In closing, we observe that part (b) of (1.3) guarantees that $p \neq 1 + q$, which is enough to show that $\alpha \neq 1$. Part (b) with (e) is also enough to show that

$$\lim_{n \to \infty} w_n = \infty. \tag{1.5}$$

2. PRELIMINARIES

Let k, ℓ , and m be three consecutive terms of $\{w_n\}$ with $k = w_n$. Since w_n is strictly increasing and $w_n \to \infty$, we may as well consider throughout the rest of the paper only those terms of w_n that are greater than 0. From [1, 4.3 & 1.9], we know that

$$l^{2} - mk = -eq^{n}$$
(2.1)
= $-(pab - qa^{2} - b^{2})q^{n}$
= $(w_{1}^{2} - w_{0}w_{2})q^{n}$ by (1.1)
< M by (1.3), part (c)

for some positive integer M. We also have

$$\lim_{n \to \infty} (\ell - k) = \lim_{n \to \infty} k \left(\frac{\ell}{k} - 1 \right) = \infty, \qquad (2.2)$$

by (1.4) and (1.5). Hence, for *n* sufficiently large,

$$\ell^2 - mk < \ell - k \tag{2.3}$$

or, with r as the midpoint of $\frac{\ell-1}{k}$ and $\frac{m-1}{\ell}$,

$$\frac{\ell-1}{k} < r = \frac{\ell^2 + km - \ell - k}{2k\ell} < \frac{m-1}{\ell}.$$
(2.4)

From (2.4), we immediately have

$$rk < 1 < m - r\ell. \tag{2.5}$$

Using (2.1), (2.4), and (1.4), we see that

$$\lim_{n \to \infty} (\ell - rk) = \lim_{n \to \infty} \frac{\ell^2 - km + k + \ell}{2\ell} = \frac{\alpha + 1}{2\alpha}$$
(2.6)

and

$$\lim_{n \to \infty} (m - rk) = \lim_{n \to \infty} \frac{km - k^2 + k + k}{2k} = \frac{\alpha + 1}{2}.$$
 (2.7)

Since $\alpha > 0$, we can now strengthen (2.5) using (2.6) to

l -

$$0 < \ell - rk < 1 < m - r\ell, n \text{ sufficiently large.}$$
(2.8)

Another obvious conclusion of (2.6) and (2.7) is

$$\lim_{n \to \infty} \frac{m - rk}{k - rk} = \alpha.$$
 (2.9)

In conclusion, using (2.6) and (2.7) with part (d) of (1.3), let us observe that

$$\lim_{n \to \infty} (\ell - rk + 1 - m + r\ell) = \frac{1 + 2\alpha - \alpha^2}{2\alpha} > 0$$
 (2.10)

so that for *n* sufficiently large

$$\ell - rk + 1 > m - r\ell. \tag{2.11}$$

[Aug.

248

3. THE GEOMETRY

Throughout this section, we assume n is sufficiently large. We let

$$AB = 1$$

$$QA = \ell - rk$$

$$QB = m - r\ell$$
(3.1)

and locate the origin of our system by setting

$$OA = 1/(\alpha^2 - 1)$$
(3.2)

and by extending BA to O.

We let D be the foot of the perpendicular form Q to OB. By (2.8) and (2.11) this construction is legitimate and gives us the triangle QAB (see Figure 1).

FIGURE 1

Now,

area
$$QAB = \frac{1}{2}DQ$$

= $\sqrt{(s(s - QB)(s - QA)(s - AB))}$ (3.3)

where *s* is the semi-perimeter of the triangle *QAB*. For notational convenience, let

$$QA = u. \tag{3.4}$$

Then, for sufficiently large n, for which

$$QB = \alpha \cdot QA = \alpha u$$
, by (2.9), (3.4) (3.5)

we have

$$s = \frac{1}{2}(\alpha u + u + 1), \text{ by } (3.1), (3.4), (3.5)$$
 (3.6)

and so

$$4DQ^{2} = (\alpha u + u + 1)(-\alpha u + u + 1)(\alpha u - u + 1)(\alpha u + u - 1),$$

by (3.1), (3.3), (3.4), (3.5), (3.6)

$$= ((\alpha u + u)^{2} - 1)(1 - (\alpha u - u)^{2})$$

$$= 2u^{2}(\alpha^{2} + 1) - 1 - u^{4}(\alpha^{2} - 1)^{2}.$$
(3.7)

Then,

$$4DA^{2} = 4QA^{2} - 4DQ^{2}$$
 by the Pathagorean Theorem
= $-2u^{2}(\alpha^{2} - 1) + 1 + u^{4}(\alpha^{2} - 1)^{2}$, by (3.4), (3.7)
= $(u^{2}(\alpha^{2} - 1) - 1)^{2}$.

Whence

$$2DA = u^2(\alpha^2 - 1) - 1.$$
 (3.8)

1984]

249

Now OD and DQ are the x- and y-coordinates, respectively, of Q, so that $x^2 + y^2 = OD^2 + DQ^2$

> $= (OA - DA)^{2} + DQ^{2}$ $= OA^{2} + DA^{2} + DQ^{2} - 2OA \cdot DA$ = $OA^2 + QA^2 - OA(2DA)$ by the Pathagorean Theorem $= \frac{1}{(\alpha^2 - 1)^2} + u^2 - \frac{1}{(\alpha^2 - 1)}(u^2(\alpha^2 - 1) - 1),$ by (3.2), (3.4), (3.8), $= \frac{1}{(\alpha^2 - 1)^2} + \frac{1}{\alpha^2 - 1}$ $= \frac{\alpha^2}{(\alpha^2 - 1)^2}.$ $x^2 + y^2 = \left(\frac{\alpha}{\alpha^2 - 1}\right)^2.$

That is,

The locus of Q as n increases is, therefore, a circle with center 0 and radius $\alpha/(\alpha^2 - 1)$.

As p, q (and, consequently, α) vary, the corresponding sequences clearly generate an infinite set of concentric circles.

4. FIBONACCI-TYPE CIRCLES

For the sequence of ordinary Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, ..., we have

$$p = -q = 1$$
, $\alpha^2 = \alpha + 1$, and $\alpha = \frac{1}{2}(1 + \sqrt{5})$,

so the circle given by (3.9) becomes the unit circle.

Moreover, all sequences for which p = -q = 1 [and so for which $\alpha^2 = \alpha + 1$, $\alpha = (1/2)(1 + \sqrt{5})]$, e.g., the Lucas sequence 2, 1, 3, 4, 7, 11, 18, 29, ..., give rise to this unit circle.

The following table illustrates the result for the Fibonacci numbers.

п	F_n	F_{n+1}	$x^2 + y^2$
2	1	2	763932
2	2	2	328550
4	2	5	01/537
5	5	8	698708
4	8	13	1 003080
7	12	15	979030
<i>'</i>	13	21	1 044630
0	21	54	1.044630
10	55	20	1 020224
10	50	09	1.029224
11	89	144	.901094
12	144	233	1.011208
15	233	377	.993066
14	510	010	1.004288
16	087	907	1 001620
10	967	1597	1.001639
10	1597	2384	.998987
10	2584	4181	1.000626
19	4181	6/65	.999613
20	6/65	10946	1.000239
21	10946	1//11	.999852
22	1//11	28657	1.000091
23	28657	46368	.999944
24	46368	/5025	1.000035
25	75025	121393	.999978
26	121393	196418	1.000013
27	196418	317811	.999992
28	317811	514229	1.000005
29	514229	832040	.999997
30	832040	1346269	1.000002

[Aug.

(3.9)

Gratitude is expressed to Wilson [3], whose Fibonacci circle, derived from five successive large Fibonacci numbers, was useful in the development of this theory.

REFERENCES

- 1. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." *The Fibonacci Quarterly* 3, no. 3 (1965):161-76.
- 2. A. F. Horadam. "Geometry of a Generalized Simson's Formula." The Fibonacci Quarterly 20, no. 2 (1982):164-68.
- L. G. Wilson. "Proof of a Connection between the Circle and any Five Extremely Large Consecutive Terms on the Positive Side of the Fibonacci Sequence." Private publication, 1980.
