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1. INTRODUCTION 

Let {Ln} be a sequence on integers defined as 

LQ = 2, L1 = 1, and Ln = Ln_1 + Ln_29 for n > 2. 

This is the famous Lucas sequence. In [1], Hoggatt and Bicknell proved that 
Lp E L1 (mod p) if p is a prime, together with its generalization L^p^L^ (mod 
p). It is interesting to note that these properties are not lost in generali-
zation of the sequence. The purpose of this paper is to prove these results 
for generalized Lucas integral sequences defined in §2 below. One more gener-
alization of Lp E L1 (mod p) has also been proved. In light of these results, 
the sequences given in [2] have been discussed. 

2. DEFINITIONS 

A generalized Lucas integral sequence of order m is defined as 

where ax, a2, . .., am are the roots of the equation 

xm = axxm~Y + a2xm~2 + ••• + am (2.2) 

with integral coefficients and am j1 0. 
These Ln

 Ts are easily obtained in terms of the a^ s by NewtonTs well-known 
formula: 

LQ = m9 Ln = a1Ln_1 + a2Ln 2 + ••• + an_1L1 + nan9 if n = 1,2, . . . , m - 1, 
(2.3) 

Ln = a A - l + a2Ln-2 + • " + "mLn-m> f o r ̂  > m* 

Equation (2.2) is called the characteristic equation of (2.3). 

3. HA IN RESULTS 

First, we shall prove a lemma for each theorem. The monomial symmetric 
functions 

0i-j_ Of-2 ... 0 i n , 

where t l t £2, ..., tn axe. integers as defined in [3]. Equation (3.1), used in 
the proofs of the lemmas, is given in [3]. 

Lemma 3•1 

Let a15 a2, .. . , am be the roots of (2.2). Then J a j 1 ^ 2 .. . a^, with dif-
ferent indices for a's, is an integer. 
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Proof: We prove the lemma by mathematical induction on n. Since 

£ "i1 = a*1 + a*1 + • • • + a*1 = Lti, 

an integer, therefore, the lemma is true for n = 1. Suppose the lemma is true 
for n = s - 1. As all the indices for aTs are different, we have: 

= L a * 1 a*2 ••• ^ts + T,OL^ + tla^ ... a*8_1 (3.1) 

t2 nt3 +t± ts , . . . . V n/** n/*3 ts+t± + E a*2 a*3 + ̂  ... at
8

8_1 + • • • + £ a*2 a . . a 8-1 *~> 1 2 ^ S - l 

Using the induction hypothesis and the fact that X) c^1 i s a n integer, we find 
that 

E ^ a * * ... a^ 

is an integer; i.e., the lemma is true for n = s. So, by induction, the lemma 
is completely proved. 

Theorem 3-1 

Let {Ln} be a generalized Lucas integral sequence and p be a prime number. 
Then 

Lp E L1 (mod p) . 

Proof: By using the multinomial theorem, we have 

(ax + a2. + ... + am)p = E , t. ,PI T~T a*1 a"2 ... a*", (3.2) 
^l• ̂ 2 ' * °  " m* 

where tl9 £2> ..., tm are nonnegative integers such that tx + t2 + ••• + tm - p 
and all indices of afs are different. 

From (3.2), we have 

(a1 + a2 + ... + am) p 

al + ap
2 + ... + ap

m + £ , P" a*1 a*2 ... a^ , (3.3) 
1 ' 

with the above conditions on t^Ts and no t̂  = p. With these conditions on the 
t^ ? s, we have that 

V ... £m! 
is an integral multiple of p. Since for each set of possible values of tl9 t2> 

..., tm all E ai l a2 2 •.. a^ m f s a r e integers, by our Lemma 3.1 we have, from 

(3.3) and (2.1), 
(Lx)p = Lp + pX9 where A is an integer. 

Using FermatTs little theorem, we get 

Lp E Lx (mod p). 

This completes the proof of Theorem 3.1. 
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Lemma 3.2 

Let a19 a2, . .., am be the roots of (2.2). Then, for different indices of 

a?s, 5Z (aj1a2
2 ... a^l

n)k is an integer for every positive integer k. 

Proof: Simply write kt^ for t± everywhere in the proof of Lemma 3.1. 

Theorem 3*2 

Let {Ln} be a generalized Lucas integral sequence and p be a prime number. 
Then, for every positive integer k, 

Lpk = Lk (mod p) . 

Proof: (aj + a2 + ••• + a ^ ) p 

p! 
y- ' y- i is a multiple of p and £ (ex* a^2 ... a^m ) is an integer for every 

given set of values of t±3 ..., tm hj Lemma 3.2. Therefore, 

(Lk)p - Lpk + p\19 where X1 is an integer 

or Lpk = Lk (mod p) , by Fermat*s little theorem, 

Lv
k = Lk (mod p) . 

Lemma 3-3 

Let ax, a2, ..., am be the roots of (2.2). Then, for different indices of 
ot * s 

E C o ^a* 2 ... atnfP* = E(ct*la*> ... a*")*?'"1 (»d p"). 

Proof: We shall prove the lemma by induction on P. In order to prove the 
lemma for r = 1, we have to prove 

ECcx*1^2 ... a*»)*p = E ( a ^ a ^ ... a*»)* (mod p). (3.4) 

The congruence (3.4) may be proved by induction on n. Since 

E (a* 1)^ - ZCal1)^ = L t l k p - Ltlk 

='.0 (mod p) (by Theorem 3.2), 
or 

Z (a^ 1 )^ E £ (a*1)* (mod p). (3.5) 

Therefore, (3.4) is true for n = 1. Consider the equation 

(£ajlkp)(i;<a*'cx*' ... a*-.,)*") 

= E C a ^ a * 2 ... a*/)fcp + E(«*2 + tla*3 ... a,*!,)^ 

+ E(a**a*'+tl ... at'./" + '•• + E (c^a*3 ... at;.+1
tl)kp. 
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Using the induction hypothesis and (3.5), we have 

(2X'*)(E(a*2a2*3 ... a*-.,)*) 

= £ ( a^a* 2 . . . al°)kp + £ ( a ^ + t l V 3 . . . «*<_/ 

+ £ (a*2a2*3+*i . . . a*'.!)" + • • • + £ (aj'a*> . . . a*-_ + *i)* (mod p) 

or 

£ (a*1"*2 ••• a* ' )* p = E (a^a*» . . . a*»)* (mod p ) . 

This proves that (3.4) is true for n = s. Thus, induction completes the proof 
of (3.4). 

Next, we suppose that our lemma is true for v = s. That is, 

E<o^a*» ... a'„")kp' = E(«i1a2
t2 ... o ^ 1 ) * " " 1 (mod p«) 

or 
Ax + ••• + X^ = X^ + • • • + X^ (mod p s ) , 

where q is the number of terms in the expansion of 

£a*la * 1 ™ * 2 ™ * « 
.. a„ 

and each X is the product of powers of the afs. Therefore, 

(X*P' + ... + x^'jP = a*/*-1 + ... + x^'" 1 )" (-°d PS + 1) 
or 

*r\ • — *ri
 + E , , p !

 y , ( £ x ? . . . A->*• 
M-]_ • • • • M q-

-= x r + - + ^r + E U ,p!
 u l (x^x^. . . xV)*"-1. 

pi 
Since :—— r is a multiple of p and 

yx! ... y«! ^ 
S ( ^ ^ ...x£«)*p' E ECX^X^ ... X^)^3"1 (modp*) 

by the induction hypothesis, we have 

, k p s + 1 . , nfePs + 1 - v
f c P B . . i k P a / J s + lx 

X / + ••• + Xq = Xx + ••• + X<? (mod ps + ±) 
or 

EXa*!1^' ... a*')kp* s E ^ a * 2 ...a*")k p' (modps + I ) , 
which shows that the lemma is true for r = s + 1. Thus, the lemma is proved 
completely by induction. 

Theorem 3*3 

Let {Ln} be a generalized Lucas integral sequence and p be a prime number. 
Then, for positive integers k and r, 

Lkvv ~ Lkp1"1 (mod Pr)* 
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Proof: The proof will be given by induction on r. By Theorem 3.2, 

Lkp E Lk (mod P)• 
This proves the theorem for r = 1. 

Suppose that the theorem is true for v = s - 1, i.e., 

£fcpa-i E £fcp"-2 (m° d P 3" 1)* 
which implies 

^p--i E Lkps~2 ( m o d P*>- ( 3 - 6 ) 
Now, 

(af--1 + ... + a r _ i ) p = a r + ••• + .«*"•+.ETT-EL-rj<«iti ••• -i-)*""1 
^ 1 • • • • ^ 7 7 7 • o r 

Lvn*-i = ^ + L T T - - T - r C a / a , 2 . . . a™) ^ . j^-ps-l -U^p 

Similarly, 
TP T , V P- / t i to tm,kp8 

"1 
On subtracting, we get 

rp TV 

= V - - * * P - + E TT^-n-Ital1 ... a',-)*""1 - ia? ...c£)*p' 

Using (3.6), - T — j — — — — — is a multiple of p, and Lemma 3.3, we have 
' i ; 

LfeD» E L ^ » - ' ( m o d P S > ' Jkps kpB 

which shows that the theorem is true for v = s. Therefore, the theorem is com-
pletely proved by induction. 

Note: Theorem 3.3 is a generalization of our previous theorems. The beauty 
of this theorem is that multiplying the index of each term of the difference 

Lkp* " Lkp1"1 

by p produces one more factor p to the new difference. It is observed that 

Lkp8 t Lkp.-i. (mod p s + 1 ) 

in most of the cases. In some cases, there exist primes where this incongru-
ence relation fails. For example, we take the sequence 

L0 = 3, Lx = 1, L2 = 5, and Ln = Ln_1 + 2Ln_2 + Ln_3, for n > 3. 

Writing a few initial terms of the sequence, 

3, 1, 5, 10, 21, 46, ..., 

we find that there exist primes 2 and 3 such that 

L2 = L (mod 4) and L% = L± (mod 9). 

4. SEQUENCES WHERE p\Lp FOR EVERY PRIME p 

Sequences of this type have been considered in [2]. First, let us prove 
the following simple theorem. 
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Theorem 4.1 

Let {Ln} be a generalized Lucas integral sequence. Then, for every prime 
p, p\Lp <=> L1 = 0. 

Proof: Suppose L1 = 0. Therefore, by Theorem 3.1, 

Lp = 0 (mod p), i.e., p|£p for every prime p. 

Conversely, suppose p\Lp for every prime p. We find, again from Theorem 3.1, 

L1 = 0 (mod p) for every prime p. 

This implies that L± = 0. Hence, the theorem is proved. 

Note: In light of this theorem, we conclude that for making such sequences 
we need L1 = 0. Ensuring the right start as pointed out in [2] is not needed. 
As a matter of fact, this right start is a consequence of L1 = 0. Moreover, it 
will be an appropriate place to point out a shortcoming in Lehmerfs proof pre-
sented in [2]. He first takes integers x9 y9 z9 and t9 and then allows x = a, 
y - 3J s = y, and t - 6, which are not integers because a, 3» Y> and 6 are the 
roots of the characteristic equation xh = 2x2 + 2x + 1. Consequently, one can-
not argue that Fp(x9 y, s, t) is an integer implies Fp(a9 3s Y* 6) is also an 
integer. In fact, Fp(a, 3> Y» <$) is an integer, as we see in our Theorem 3.1, 
with the help of Lemma 3.1. 
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