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1 . INTRODUCTION 

The s i g n l e s s ( a b s o l u t e ) S t i r l i n g numbers of t h e f i r s t k ind 

S1(m9 ri) = (-l)m~ns(ms ri) 
and t h e S t i r l i n g numbers of t h e second kind 

S(m9 ri) 
may be de f ined by 

S^m, ri) = ( - I ) 1 ""* ±[D
n(x)n]xmQ, S(m, ri) = ^ - [ A V ] ^ , 

where (x)m = x(x - 1) ... (x - m + I) denotes the falling factorial of degree 
m9 D the differential operator, and A the difference operator. The numbers 

C(m9 n, r) = — j ib?(vx) m ] x = 0 , r a real number, 

which first arose as coefficients in the n-fold convolution of zero-truncated 
binomial (with p a positive integer) and negative binomial (with v a negative 
integer) distributions (see [1]) and have subsequently been studied systemati-
cally by the present author in [6], [7], and [8], are closely related to the 
Stirling numbers. This was the reason why Carlitz in [2] called the numbers 

S^m, n\X) = (-lf~n\~nC(m, n, A), S(m, n\X) = \mC(m, n, X"1) 

degenerate Stirling numbers of the first and second kind, respectively. 
Recently, Carlitz introduced and studied in [3] and [4] weighted Stirling 

numbers S1(ms n, X) and S(m, n, X) by considering suitable combinatorial inter-
pretations of S^m, ri) and S(m, ri) , respectively. Several properties of these 
numbers and the related numbers 

R1(m, n, X) = S1(m> n + 1, X) + 51(m, ri) , 
a n d R(rn9 n, X) = SQn, n + 1, X) + S(m, ri) 

were obtained. 
In the present paper, by considering suitable combinatorial interpretations 

of the number C(jn, n, v) when v is a positive or negative integer, we introduce 
the weighted (7-number, C(m, n; r, s) , with r an integer and s a real number. 
Certain properties of these numbers are obtained in §2. 

The related numbers 

G(m9 n; r, s) = C(m9 n + 1; r, s) + C(m9 n, r) 

are shown to be equal to 

G(m, n; r9 s) = — [ k n ( r x + s)m]xmQ. 
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ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS 

These numbers have been systematically studied in [9]. A representation of 

G(m9 m - n; r, s) 

as the sum of binomial coefficients is obtained and certain properties of 

m 
Gm(r, s) = £ G(W> n> r> s) 

n = 0 
are derived in §3. 

Combinatorial applications of the numbers 

E1(mi n, A), R(jn9 n, A), and G(m9 n; P, S) 
are discussed in §4. 

2. THE NUMBERS C(m, n\ r, s) 

The C-numbers 

C(m, n, r) = ̂ y-[An (rx)m ]xssQ 

may be expressed in the form (see [7]): 

Cirri, n, r) = ~j ^ C ( O T ; k19 k2, ..., km; r) , (2.1) 
. *Tr(m, n) 

where 
(k1 + k2 + • • • + km) ! /v,k1 /v.kz /r\k„ 

C(m; kl, k2, .... km; r) = fc^,,..^, (\) (J) ... Q (2.2) 

and the summation is over all partitions TF(W, n) of m In n parts, that is, all 
nonnegative integer solutions (kl9 k2, . .., km) of the equations 

k± + 2k2 + • - • + 7??fcm = m9 k± + k2 + * • • + km- = n* (2.3) 

Note that C(m; k19 k29 ..., km\ v), v a positive integer, is a distribution 
of (number of ways of putting) m like balls into k1 + k2 + ••• + km different 
cells, each of which has r different compartments of capacity limited to one 
ball, such that kj cells contain exactly J balls each, j = 1, 2, ..., m. When 
the capacity of each cell is unlimited, the corresponding number is equal to 

\C(m; k19 k29 ..., km; -r)\ = (~l)mC(mi k19 k29 ...,-km; -r), 

where r is a positive integer. 
The expression (2.1) leads to the following combinatorial interpretations 

of the C-numbers: 
m\ 
-—j- C(m9 n, 2?) , v a positive integer, 

is the number of ways of putting m like balls into n different cells, each of 
which has r different compartments of capacity limited to one ball, with no 
cell empty. When the capacity of each compartment is unlimited, the corre-
sponding number is equal to 

—y\C(m9 n9 -3?) | = (-l)m—\€{m9 n, -v) , v a positive integer. 
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(2.4) 

Consider the weighted number of distributions 

C(m; k19 k2, ..., km; r9 s) 

= (ki + fc2 f... + K)l E(Kw± + k2w2 + ... + fcA) 
where the weights 

î . = ̂ -(r, s) = (s)^ /Wj, J = 1, 2, ..., 772, r a positive integer, 
s a real number, 

and the summation is over all distributions of 7?? like balls into k1 + k2 + 
+ &m different cells, each of which has r different compartments of capacity 
limited to one ball, such that kj cells contain exactly j balls each, j = 1, 2, 
.. ., 777, and 

C(m; k19 k29 . .., kw; -r, s) 

- (ki + k2+\r7Tl^^(kivi + M2
 + ••' + KvJ (2.5) 

where the weights 

vd = vj(~r> s ) = (sh' Z(~~rh' > 3 = -1' 2 , . . . , 772, p a p o s i t i v e i n t e g e r , 
s a r e a l number, 

and the summation is over all distributions of 777 like balls into k± + k2 + 
+ km different cells, each of which has r different compartments of unlimited 
capacity, such that kj cells contain exactly J balls each, j = 1, 2, ...,772. 

Let 

C(jn9 n; v9 s) = /J C{m\ k19 k23 ..., & ; r, s) , r an integer, (2.6) 
•n(m,ri) s a real number, 

where the summation is over all partitions IT(777, n) of 777 in n parts. The num-
bers , _ 

C(m9 n; rs s) = — C(m,-n; r9 s) (2.7) 

may be called weighted C-numbers. 
Putting s = v in (2.4) and.. (2.6), with Wj = 1, J = 1, 2, -.-.., 777, we obtain 

C(m9 n; v9 r) = C(m,.n, r), (2.8) 

while putting s = -2? in (2.5) and (2.6), with Vj = 1, J = 1, 2, . ... , m, we get 

(-l)mC{m9 n; ~v9 -v) = (-1)/7ZC(?7?, n, -2?) ='|C(m,n, -2?)|". (2.9) 

Now consider the generating function 

F(t, w1,.w2, •-...; P5 e) = X) S C{jn\k^ k2> ...,.km; r, s) —yU^-U.^... u;n
m, 

m = 0 Tr(rn) 

2» an integer, 
s a real number, 

where the inner summation is over all partitions i\{m) of m, that is, over all 
nonnegative integer solutions (kl9 k2% ..., ftm) of the equation 

k± + 2k2 + • • • + mkm = 772. 
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Using (2.4) when T is a positive integer and (2.5) when r is a negative inte-
ger, we get 

F(t9 ul9 u2i ...; r9 s) 

- i o A-js <Mi+M2+ • • •+ wki lkf;.. v [(O^f^M]*1 • • • [GK̂ P 

The generating function 

F(t, u; r, s) = 22 E C{m9 n; v9 s)-rw" 
n-0 m^ n m' 

(2.10) 
~ +rr 

'ml 
: E E <?0> n; r9 s)-^-uTl 

m=0 n=0 

may be obtained from F(t9u19 u > . ..; i», s) by putting Uj = u9 j = 1, 2, ... . 
We get 

F(t,u;r, s) = u [ ( l + t ) s - l]exp{w[.(l + t)r - 1 ]} , (2.11) 

and 

/ (*; r , s) = 2 c(m» »; r> s ) ^ r = / „ _ n , [ d + *) a - i ] [ d + * ) r - H " " 1 . (2.12) 

The corresponding generating function of the usual C-numbers is ([7]): 

m=n m' n' 
Since 

fn(t; r,.s) = [(1 + t)s - l]fn^(t; r)., 

we find 
m - n + 1 

C(77i, n; r, e) = E U ) 0 0 ^ 0 * - j, n - 1, r). (2.14) 

Note that (2.12) for s - v reduces to 

fn(t; r9 s) = nfn(t; r), 

which implies (2.8) and (2.9). 
Using the relation ([7]), 

(s)j = E «J> k> r)(s/r)k. 
k = l 

(2.14) may be written as 

C(m9 n; v9 s) = E fj E C(j, K r) (e/r) J<7(w - j, n - 1, r) 

rri-n-l l-n-1( m / ) 
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From (2.13), we have 

which implies 

(k I n)c(m, k + n, r) = jt (J) W * *> ^c^m ~ 3> n> ^ • 
Therefore, j - k < J / 

C(m, n; r, s) = £ V k )°(m> n + k " *' p) (s/p)* " (2'15) 

fe = i 

Using the generating functions (see [3]), 

^L _ -hm 1 

0„(*' x> = £ Si<m, n, X ) ^ - - , _. n,[(l - t)-A-l][-log(l - t)]""1, (2.16) 

and «, m 

Kit) = E s f c w>|r = ir(e t - D"-
m = n "' * r t ' 

(2.12) may be expressed as 

/ „ ( * ; r , 8) =jtnC(m, n; r, s ) g - ( n _X ^ , [ ( 1 + t ) s - i ] [e*log<i+t> _ 1 ] n - i 

= £ > ( f c - 1, n - l ) ^ - 1 ) ^ ^ ^ , [ ( 1 + t)s - l ] [ l o g ( l + t)]k-^ 

oo oo m 

= £ r ^ S t f c - 1, n - 1) £ ( - l r ^ - ^ O n , fc, -a ) | j -
' fc = n m = n * 

00 ( m ) -f"7 

= £ < £ ( - D m " ? ; - V - 1 5 1 ( m , fc, -s)5(fe - 1, n - 1)}^; 
m = rc ( fc = n \ m ' 

m ' _ 
C(m, n; r9 s) =' £ ( - l ) 7 7 7 " ^ 1 ! ^ " 1 ^ ^ , fc, -s)S(fc - 1, n - 1) . (2.17) 

/c= n 

hence, 

and 

Again from (2.12) we have 

lim r-n + 1fn(t; r, s) = J n,[(l + * ) s - l][log(l + t)]""1 

l±m f (t/r; r, s) = * n,(e A t - l)(e* - l)"" 1, if lim f = X, 

which, by virtue of the generating functions of the weighted Stirling numbers, 
(2.16), and (see [3]) 

Ht, X) = £ s ( m , n, X)|r °  . n,(e X t - D(e* - l ) " - 1 , (2.18) 

imply 

lim r-'nn?(w, n; r, S) = (-l)m"n + 1SAm, n, -s) (2.19) 
and ^ °  _ • .• i 

lim r~mC(m, n; r, s) = S(rn, n, X), if lim - = X, (2.20) 

respectively. 

300 [Nov. 



ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS 

3Q THE NUMBERS G(m, n; r, s) 

Let 
G(m9 n; p, s) = C(ms n+ 1; P, s) -+ C(m9 n9 r). 

Then (2.14) implies 

Since 

m- n . 
G(m9 n; r9 s) = X ( A (s).C(m - j, n9 p). 

.7 = o \ <7 / J 

(3.1) 

(3.2) 
j = o 

Cfa, n, P) = ̂ y[An(p^);77]a,==03 w = 0, 1, 2, ..., m, TT? = 0, 1, 2, ., 

and 

it follows that 

C(m, n, p) = 0 for m < n9 

1 An £(777, w; *», s) = £ ("•) (shC(m - j\ n, p) = -^-A" 
j=0 \J / ri. .J = 0 a;= 0 

ands by virtue of Vandermondefs convolution formula, 

G(m, n; r, a) = ̂ [A* («c + S ) J X . 0 = ̂  £(-!)»-*(£) (l* + s ) m . 

These numbers, shown as coefficients in a generalization of the Hermite poly-
nomials considered by Gould and Hopper, were systematically studied in [9]. A 
representation of G(ms m - n; p, s) as the sum of binomial coefficients will be 
discussed here. 

The numbers G(ms n; P, S) satisfy the triangular recurrence relation 

G(m + 1, n; P, s) = (rn + s - m)G(m, n; P, s) + vG(m9 n - 1, P) (3.3) 

with initial conditions 

G(0, n; P, s) = S0n, G(m, 0; P, S) = (s)m, and G(ms n; P, s) = 0 for m < n. 

P u t t i n g n = m + 1, we ge t 

G(m + 1, 77? + 1; p , s) = vG{m9 m; P , s), m = 0, 1, 2, . . . 
and 

£(m, m; P , s) = p m . 

If we put n - 1 in (3.3), we find 

G(m + 1, 1; PS s) = (P + s - m)G(m9 1; P, S) + z>(s)„ 

and, in particular, 

C(2, • 1; p, s) = (P + s - 1 ) P + PS = r(i» + 2s - 1) .. 

Again, if we put n = TT? - /< + 1 in (3.3), we obtain 

£(777 + 1, 777 + 1 - k; P , s) - vG{m9 m - k; P , S) 

= [p(777 - k + 1) + s - m]G(m5 m - k + 1; P , S) 
or 

-m + k 

( 3 . 4 ) 

Lmr'm+KG(m9 m - k; r9 s) 
= r " m + / c " 1 t ( r - 1)772 - r(k - 1) + s]£(77z, TW - A: + 1; P , S ) . ( 3 . 5 ) 

For k = 15 we have 
hmr~m + 1G(m9 77? - 1; p , s) = ( P - 1)777 + s 
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and 

r-m + 1G(m, m - 1; p, s) = A ^ K P - l)w + s] = (P - 1)(2) + *(*) + X. 
Since (7(2, 1; p, s) = r(r + 2s - 1), X = 0, and 

r-m + 1£(m, m - 1; r, s) = (P - 1)(2) + e(j) • (3.6) 
Taking k = 2 in (3.5), we get 

r-m + 2G(m, m - 2; p, s) == A;X<[[(P - l)w + s - p] [(P - 1)(^) + *.(j)]}. 

which on using the relations 

»-.'{.(?)}-K,: o - ( J : a - « • »G: * ) + ' 0 : I ) -
gives 

p-w+2£0n, m - 2; P, 8) = 3(P - 1)2(^) + (p - l)(p + 3s - 2)(*) + s(s - 1)(^). 
Hence, r~m+2G(m9 m - 2; r, s) is a polynomial of m of degree 4. Consequently, 
r~m+nG(m, n - n; P, s) will be a polynomial of m of degree In. Let us write it 
as follows: 

In , . 

p"m+n£(m, m - n; p, s) = E fl(w, fc; P, s ) ( 2 n ^ fc). 

Multiplying both numbers by [ (p - 1)??? - rn + s] and using (3.5), we have 
2n Amp-w+n+1(;(m, m - n - 1; p , s) = E « n , fc; P , S ) [ ( P - 1)??? - rn + &](2n

W2_ j,)» 
and since 

A ^ [ ( P - Dm - r n + s](2n
m- k) 

- ( P - 1)(2„ - fc + D ( 2 n _W, + J + [ ( P - l ) (n - *> - n + s ] ( 2 n _* + J , 

we get 
-w+n + i£ ( 7 7 2 j m _ n _ i; P , s ) 

2n 

?c=0 

and 

£ (2n - fc + l ) ( r - l)ff(n,. fc; r , s > ( 2 n _ fe + 2 ) 

+ £ t ( r - D ( " - k) - n + e]H(n, k; r, s)(2n _ \ + J + K 
k= 0 

KZ+ 2 / m \ 
L f l ( n + 1, *; r , s ) ( 2 n _ & + J 

D (2n - k + 1 ) ( P - l )#(n , fc; P , s ) ( 2 n _ fc + 2 ) 

2 n + l / 777 \ 

+ E [(« - fe + D ( * \ - 1) - n + e]H(w, fc - 1; r , s ) ( 2 n _ j , + 2 ) + 

fc=0 
2n+ 2 

L 
2n 

= £ 
?c=0 
2n+ 1 

Therefore, 
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H(n + 1, k; r, s) = (2n - k + 1) (r - l)#(ft, fc; P, s) 

+ [(ft - fc + l)(p - 1) - n + s]#(ft, fc - 1; P, s) (3.7) 
and 

#(n + 1, 2n + 2; r, s) = Z. 

From (3.6), it follows that 

H(l, 0; P, s) = v - 1, #(1, 1; P, s) = s, and #(1, k; P, s) = 0 for fc > 1. 

Putting successively n = 1, 2, ... in (3.7), we conclude that 

H(n9 k; P , s ) = 0 i f k > ft, 

and hence , 

r-m + n£072, TTZ - ft; P , s) = £ #(ft, fe; P , e ) ^ 7 ^ fe)- (3 .8 ) 

Using (3.7), we may easily deduce that 

H(n, n; r, s) = (s) . ft = 1, 2, ..., (3.9) 
and 

.n (2ft)! H(n, 0; P, s) = ( P - l)nl • 3 • 5 • ••• • (2n - 1) = (r - l ) n ^ ;' (3.10) 
n\2n 

Moreover, for 
^„(r, e) = £ (-l)n'^(n, fc; P, e) 

k = o 
we get 

Sn(z», s) = [(s - r + 1) - r(n - l)]Sn_1(r, s), n = 2, 3, ..., 
and 

^(p, s) = -5(1, 0; p, s) + 5(1, 1; P, s) = s - P + 1. 

Therefore, 

S„(r, *) = E (-Dn'*H(n, fc; P, a) = Pn(g " ̂  + M - (3.11) 

, - I Jyi _ "7 \ 

Multiplying both members of (3.8) by (-l)m"r«MiC-" d) and summing for TTZ = ft, 
ft + 1, ..., 2n - j , we obtain the relation 

2n- j 
H{n, j ; r, s) = £ {-l)m+HZn " <7Vm+*G(m, n - n; r, a), (3.12) 

m = n \ rn / 

which leads to interesting combinatorial interpretations for these numbers or, 
more precisely, for the numbers 

G2(m, n% P, s) = rnH(m - n9 m - 2n; P, s) 

E(-l)k(™)rkG(m - k, n - k; r, s). (3.13) 

L G(jn, n; r, s)-^ = ̂ -(1 + t)s [(1 + t)r - l]n 

fc=0 
Since (see [9]) 

it follows that 

£ G2(m, n; r, s ) ^ = E < E (-l)k(£)r*G(m - fc, 
m = n '"• m=rc (fc = 0 X *' 

n - k; r, s)}^ 
ml 

(continued) 
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= £ i-Dk^ff-T.GOn - k ; n - k , v, s) * 

= ^-( i + * ) S E ( £ ) t a + ty - i ]* -^ -**)* , 
and 

E G2(TTI, «; *, s)^- = -̂ -(1 + t)s[(l + t) r - 1 - P £ ] V (3.14) 

Consider n different cells of P different compartments each and a (control) 
cell of s different compartments. The compartments may be of limited capacity 
or not (Riorday [11, Ch. 5]). From (3.14), it follows that the number of ways 
of putting 77? like balls into these cells such that each cell among the first n 
contains at least two balls is equal to 

^y G2(m, n; P, s) 

when the capacity of each compartment is limited to one ball and to 

(-If̂ f G2(m, n; -P, -s) 

when the capacity of each compartment is unlimited. 
It is worth noting that the expression (3.8) may be written in the form 

r-m+nG(ms m - n; r, s) = E L(n, j; p, s)(W^J), (3.15) 

where, on using the relation 

\ In ) fe?0 \k)\2n - k) 

the coefficients L(n9 j ; PS s) are related to the coefficients H(ns k; P, s) 
by 

n , . v 

H(n, k; P, s) = E (^jM^ 3\ r> s)," (3.16) 
j = k 

L{n, j; P, s) = E (~l)k-H))H(n9 k; P, s)-. (3.17) 

Moreover, L(n, j ; P, s) satisfy the recurrence relation 

£(n + 1, j; p, s) = [(a? - l)(n + j + 1) + n - s]L(n, j; p, s) (3.18) 

+ [(P - 1) (n - j + 1) - n +'• s]L(n, j - 1; P, s), 

with initial conditions 

L(l, 0; r, s) = r - s - 1, L(l, 1; P, S) = s, and L(n, j ; P, S), = 0 if j > n. 

Also, by (3.9), (3.10), and (3.11), 

L(n, n; P, S) = Z/(n, n; P, S) = (s)n , w = 1, 2, ..., (3.19) 

L(n, 0; p, s) = E (»D^(n, fc; P, a) = (-l)nPn(- ^-± Jl) . (3-20) 

^ (2n)! 
; n\2n 
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We conclude this section by considering the sum 

m 
Gm^, s) = E G{m9 n; r9 s) , (3.22) 

n = 0 

which for s = 0 reduces to 
m 

Cm(r) = E C(ra, n9 r). (3.23) 
rc = 0 

This sum has been studied in [5] and also by Carlitz in [2] as 

m m 

Ama) = E S(m, n\\) = £ AmC(m, n, 1/X) = \mCm{l/X). 
n=0 n=0 

Note that, since (see [7]) 

lim r-mC(m, n, r) = S(m9 n), (3.24) 

it follows that 
777 

lim r ' X W = E f̂a, «) = 3m. C3"2^) 
**-*° ° n = 0 

where Bm denotes the Bell number. Also from (3.1) we get, on using (2.20) and 
(3.24), 

lim r~mG(m9 n; r, s) = S(m9 n + 1, A) + S(m9 ri) 

Hence, 

= R(jn9 n9 X), X = lim —. 

7>->- oo 2? 

777 

lim r""Gm(r9 s) = E Hm, >̂ X) = B_(X), A = lim f, (3.26) 

where the number Bm{X) has been discussed by Carlitz in [3]. 
Now, from (3.22), (3.23), and (3.2), it follows that 

m m-n 

Gm(r> s) = E Z [A(8)jC(m - J, n, v) = E H W J £ ^ " <?> n> p)' 
n = 0 j = 0 X t y / j = o X t / / n « 0 

777 , v 

Gm(r, a) = E • ( S ) ^ B . i W . (3-27) 
j = 0 x d ' 

*<*; r , a) = £ Gm(r, a ) ^ = £ ( ^ ) * ' £ C^<r)iL 
777=0 W * J = 0 V ^ ' 777 = 0 ™ * 

(1 + t)sexp{(l + tY - 1}, (3.28) 

since (see [5] or [2]) 

Fit; P) = E CmWh- = e x P{d + *>* " ! } • 
777 = 0 ' * 

We have 
F(t; v9 s + 1) = (1 + t)F(t; r9 s) 

and, hence, 

Gm(r, s + 1) = Gw(r, s) + mGm.1{r9 s), TW = 1, 2, . . . , £0(r, s) = 1. (3.29) 

Differentiation of (3.29) gives the differential equation 
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(1 + t)~ F(t; r, s) = sF(t; r, s) + r(l + t)rF(t; r9 s), 
which implies 

Gm+1(r, s) = (s - m)Gm(r9 s) + r'J (J) (r). Gm_.(r, s). (3.30) 

Writing the generating function F(t; r, s) in the form 

. rk+ s 
F(t; r, s) = e^d + t)sexp{(l + t)r} = e ' 1 ^ i f (i + ty 

k = 0 k\ 

= e_ 1EF^w + s)^^T' 
we find 

n * (rfc + s)m 
GJr, s) = e-1 E W-^ (3-31) 

which should be compared to Dobinski!s formula for the Bell number: 

o°  7, m 

*m = ̂ E T T - (3.32) 

From (3.31) we obtain, on using (3.32) and the relation (see Carlitz [3]), 

m 
(rk + s)m = £ {-l)m-nR^m, n, -s)rnk\ 

n = 0 
m 

Gm(r> s) == £ (-l)m"Bi?1(m, n, -s)r"5n. (3.33) 

COMBINATORIAL APPLICATIONS 

*i.1 Modified Occupancy Stirling Distributions of the First Kind 

Consider an urn containing v identical balls from each of n + v different 
kinds (colors). Suppose that m balls are drawn one after the other and after 
each drawing the chosen ball is returned togather with another ball of the same 
kind (color). Let X be the number of kinds (colors) among n specified appear-
ing in the sample. The probability function of X, on using the sieve (inclu-
sion-exclusion) formula, may be obtained as 

p1(k; m, n, r, v) = Pr(X + k) 

(n\ V f-n*~H ̂  \(TJ + rv + m - l\ I Ivn + rv + m - 1\ 

= 7 ; ; : r-r— \G(m, k\ ~2», -TV) , (4.1) 
(rn + rv + m - l)m ' ' 

k = 1, 2, ..., min{w, n}. 

Now, consider the case where the number m of balls is not fixed but balls 
are sequentially drawn and after each drawing the chosen ball is returned to-
gether with another ball of the same kind until a predetermined number k of 
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kinds among the n specified is represented in the sample. Let I be the number 
of balls required. Then the probability function of J is given by 

qi(m; k9 n, r9 v) = Pl(k- 1; m- 1, n9 r9 v ) ^ ~ / + V - 1 

(rc)fc-i , 7 , , r(n - k + 1) 
= -7 ; ; rr \G(m- 1, k- 1; -r9 -rv) — ^ ; ~-

(rn + rv + m- 2)m _ 1' v ' ' lrn + rv + m- I 
K ]G(m-l3 k-1; -r9 -rv) \ , (4.2) 

(rn + rv + m- I). 

m = k, k + 1, ... . 

Suppose that lim rn = 0 and lim r^ = X, then since (see [9]) 
v -*• 0 2* -»• 0 

lim r-k\G(m, k; -r9 -rv) \ = |s(m, fc, A) I = S,(m9 k9 X) 

it follows from (4.1) and (4.2) that 

pAk; m, Bs A) = limp_(fc; m9 n9 r9 v) = , ^ T-T—S^fa, A:, X ) , (4.3) 
1
 P->o -1 W -r A + 777 - i;m 

and 

q,{m\ k, 6, A) = lim q,(m\ k, n9 r9 v) 

(9)k 

- (e + x + ̂ - i r ^ 0 " " *' fe~ ls X)- (4-4) 

Note that (4.3) gives in particular A = 0 the occupancy Stirling distribu-
tion of the first kind (cf. Johson and Kotz [10, p. 246]). 

4.2 Modified Occupancy Stirling distributions of the Second Kind 

Suppose that m distinct balls are randomly allocated into n + r different 
cells and let X be the number of occupied cells (by at least one ball) among 
n specified. Since R(m9 k9 r) is the number of ways of putting the m balls 
into the n + r cells such that k cells among the n specified are occupied (by 
at least one ball), it follows that 

(n) 
Pr(X = k) = *— R(m9 k9 r), k = 1, 2, . .., m±n{m9 n]. (4.5) 

(n + r)m 

The factorial moments of X may be obtained in terms of the number R(jn9 k9 r) as 
follows: 

H W ) = t ik)dPr(X = k) = * ±&)d(n)kR(.m, k, r) 
k=j \Jl + P) k = r 

i£r£&--flfc**-*-r) 

(continued) 
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3).R(m, i + j , r ) . 

Since 
n - j" 
E ( n v J')(^ + ftiRim, i + J, P) - TT E J ( n „• J V + J > = \ kjEn-Jrm 

i = 0, U ' d ' -i = o ' ^ * 

~ AJ'(p + n - j)"7 = i?(/7z, j, r + n - j), 

1 / n \ 

Now, consider the case where the number of balls is not fixed but balls are 
sequentially (one after the other) allocated into the n + r different cells 
until a predetermined number k of cells among the n specified are occupied. 
Let Y be the number of balls required. Then, 

(n + v)m~x > J n + r 

(n) v 
Rim - 1, k - 1, r), m = k, k + I, ... . 

(n + r)m 

Since ^ Pr(Y = m) = 1, we must have 
m = k 

1 1 £ i?(777 - 1, fe - 1, r) 
m~k (n + r)"7 (n)fc 

This relation holds in the more general case where v is any real number and n 
real number different from 0, 1, 2, ..., k - 1. Indeed from Carlitz [3], 

~ "m zk 

2~>k
R(m> k> V*m = "(i - Xz)(l - (A + l)s) ... (1 - (A + k)z) 

i t fo l lows t h a t 

E i ? ( m - 1, fc - 1 , P ) ^ " 1 = — : — ~ — • l-
m = k ( s " 1 - A ) ( s _ 1 - A- 1) . . . O s ^ - A - f c + l ) ( s - 1 - X ) k 

and putting z'1 - X = n, z = (n + A)" 1 , we obtain 

E # 0 w - 1* fe - 1, A) -m^k {m + X)m (n)k 

Remark 4.1 

The distribution (4.5) with r not necessarily a positive integer arose in 
the following randomized occupancy problem (see [10, p. 139]). Suppose that m 
balls are randomly allocated into n different cells and that each ball has 
probability p of staying in its cell and probability q = 1 - p of leaking. Let 
I be the number of occupied cells. Then, the probability function of X may be 
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obtained by using the sieve (inclusion-exclusion) formula in the form 

k 
Pr(X = k) = (J) E (-DJ'(J)(<7 + P(* - Q)ln)m 

(n)k 
- __ #(W j fc, X) , k = 1, 2, . .. , mln{m, n}, A = no/p. 

(n + X)m 
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