A NOTE ON THE CYCLE INDICATOR

OURANIA CHRYSAPHINOU
Athens University, Panepistemiopolis (Couponia), Athens 621, Greece (Submitted March 1983)

1. INTRODUCTION

Let the cycle indicator

$$
\begin{equation*}
C_{n}(t) \equiv C_{n}\left(t_{1}, \ldots, t_{n}\right)=\sum \frac{n!}{k_{1}!\ldots k_{n}!}\left(\frac{t_{1}}{1}\right)^{k_{1}} \cdots\left(\frac{t_{n}}{n}\right)^{k_{n}} \tag{1}
\end{equation*}
$$

where the summation is over all nonnegative integral values of k_{1}, \ldots, k_{n} such that $k_{1}+2 k_{2}+\cdots+n k_{n}=n$.

The exponential generating function of $C_{n}(t)$ is (see [2, Ch. 4]:

$$
\begin{equation*}
\exp u C=\sum_{n=0}^{\infty} C_{n}(t) \frac{u^{n}}{n}=\exp \left\{\sum_{k=1}^{\infty} \frac{t_{k}}{k} u^{k}\right\},|u|<1 \tag{2}
\end{equation*}
$$

Applying a Tauberian theorem [1, Th. 5, p. 447] to (2), we will be able to derive a limiting expression of $C_{n}(t) / n!$, as $n \rightarrow \infty$, under certain conditions.

2. A LIMIT THEOREM

Before we state and prove the main theorem, we shall prove the following lemma, which will be useful in the sequel.

Lemma 1
If

$$
\frac{1}{n} \sum_{k=1}^{n} t_{k} \rightarrow t, 0<t<\infty,
$$

and the sequence $\left\{t_{n}\right\}, n=1,2, \ldots$, is monotonic, then the sequence

$$
\left\{\frac{C_{n}(t)}{n!}\right\}, n=1,2, \ldots,
$$

is monotonic for $n>N$, where N is a fixed number.
Proof: Using the well-known recurrence relation of the cycle indicator, we have:

$$
\begin{align*}
\frac{C_{n+1}(t)}{(n+1)!} & =\frac{1}{(n+1)!} \sum_{k=0}^{n}(n)_{k} t_{k+1} C_{n-k}(t) \\
& =\frac{1}{n+1} t_{1} \frac{C_{n}(t)}{n!}+\frac{1}{n+1}\left\{t_{2} \frac{C_{n-1}(t)}{(n-1)!}+\cdots+t_{n+1}\right\} \tag{3}
\end{align*}
$$

Supposing that $\left\{t_{n}\right\}, n=1,2, \ldots$, is monotonic decreasing, equation is written:

$$
\begin{equation*}
\frac{C_{n+1}(t)}{(n+1)!}<\frac{1}{n+1} t_{1} \frac{C_{n}(t)}{n!}+\frac{1}{n+1} \frac{C_{n}(t)}{n!}=\frac{t_{1}+1}{n+1} \frac{C_{n}(t)}{n!} \tag{4}
\end{equation*}
$$

Since $\left\{t_{n}\right\}, n=1,2, \ldots$, is bounded, equation (4) is bounded by

$$
\frac{C_{n+1}(t)}{(n+1)!}<\left(\frac{N+1}{n+1}\right) \frac{C_{n}(t)}{n!} \text { or } \frac{C_{n+1}(t)}{(n+1)!}<\frac{C_{n}(t)}{n!} \text { for all } n>N
$$

Theorem 1
If $\frac{1}{n} \sum_{k=1}^{n} t_{k} \rightarrow t$, as $n \rightarrow \infty, 0<t<\infty$, then

$$
\begin{equation*}
\exp u C \sim \frac{1}{(1-u)^{t}} L\left(\frac{1}{1-t}\right) \text {, as } u \uparrow 1-, \tag{5}
\end{equation*}
$$

where L is a slowly varying function at infinity.
Furthermore, equation (5) implies that

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{C_{k}(t)}{k!} \sim \frac{1}{\Gamma(t+1)} n^{t} L(n), \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

If, additionally, $\left\{t_{n}\right\}, n=1,2, \ldots$, is monotonic, then equation (5) is equivalent to

$$
\begin{equation*}
\frac{C_{n}(t)}{n!} \sim \frac{1}{\Gamma(t)} n^{t-1} L(n), \text { as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

Proof: Using the relation

$$
\sum_{k=1}^{\infty} \frac{u^{k}}{k}=\log \frac{1}{1-u}, \text { for } 0<u<1,
$$

equation (2) is written

$$
\begin{equation*}
\exp u C=\frac{1}{(1-u)^{t}} \exp \left\{\sum_{k=1}^{\infty} \frac{u^{k}}{k}\left(t_{k}-t\right)\right\} \tag{8}
\end{equation*}
$$

Letting

$$
\begin{equation*}
L\left(\frac{1}{1-u}\right)=\exp \left\{\sum_{k=1}^{\infty} \frac{u^{k}}{k}\left(t_{k}-t\right)\right\} \tag{9}
\end{equation*}
$$

and making the substitutions

$$
\frac{1}{1-u}=x \quad \text { and } \quad t_{k}-t=y_{k},
$$

equation (9) is written

$$
L(x)=\exp \left\{\sum_{k=1}^{\infty}\left(1-\frac{1}{x}\right)^{k} \frac{y_{k}}{k}\right\}
$$

which is a slowly varying function at infinity, according to [1, Cor. p. 282]. So equation (5) has been proved. Now, applying Theorem 5 of [1, p. 447], we get equation (6).

A NOTE ON THE CYCLE INDICATOR

Using Lemma 1 and the same Theorem we have that (5) is equivalent to (7).
Corollary 1
If

$$
\frac{1}{n} \sum_{k=1}^{n} t_{k} \rightarrow t \quad \text { and } \quad \frac{1}{n} \sum_{k=1}^{n} s_{k} \rightarrow s
$$

and the sequences $\left\{t_{n}\right\},\left\{s_{n}\right\}, n=1,2, \ldots$, are monotonic, then

$$
\begin{equation*}
\frac{C_{n}(t+s)}{n!} \sim \frac{1}{\Gamma(t+s)} n^{t+s-1} L(n), \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

Proof: Since the $C_{n}(t)$ is of the binomial type, we have:

$$
\begin{equation*}
C_{n}(t+s)=\sum_{k=0}^{n}\binom{n}{k} C_{k}(t) C_{n-k}(s) . \tag{11}
\end{equation*}
$$

Applying equation (7) to (11), we get
$\frac{C_{n}(t+s)}{n!}=\sum_{k=0}^{n} \frac{1}{\Gamma(t)} k^{t-1} L(k) \frac{1}{\Gamma(s)}(n-k)^{s-1} L(n-k)+o\left(k^{t-1},(n-k)^{s-1}\right)$,
where $o\left(k^{t-1},(n-k)^{s-1}\right)$ is such that

$$
\frac{o\left(k^{t-1},(n-k)^{s-1}\right)}{k^{t-1} \cdot(n-k)^{s-1}} \rightarrow 0
$$

uniformly in k and n as the $\min (k, n-k) \rightarrow \infty$.
Equation (12) is equivalent to

$$
\begin{align*}
\frac{C_{n}(t+s)}{n!}=\frac{n^{t+s-1}}{\Gamma(t) \Gamma(s)} & L^{2}(n) \sum_{\frac{k}{n}=0}^{1} n^{-1}\left(\frac{k}{n}\right)^{t-1}\left(1-\frac{k}{n}\right)^{s-1} \frac{L\left(n \frac{k}{n}\right)}{L(n)} \frac{L\left(n\left(1-\frac{k}{n}\right)\right)}{L(n)} \\
& +o\left(\left(\frac{k}{n}\right)^{t-1},\left(1-\frac{k}{n}\right)^{s-1}\right) \tag{13}
\end{align*}
$$

By the definition of slowly varying function at infinity, we have that

$$
\frac{L\left(n \frac{k}{n}\right) L\left(n\left(1-\frac{k}{n}\right)\right)}{L(n) L(n)} \rightarrow 1 \text { as } n \rightarrow \infty
$$

Thus, interpreting the sum in (13) as the approximation to a Riemann integral as $n \rightarrow \infty$, we get

$$
\frac{C_{n}(t+s)}{n!} \sim \frac{n^{t+s-1}}{\Gamma(t) \Gamma(s)} L_{1}^{2}(n) \int_{0}^{1} x^{t-1}(1-x)^{s-1} d x
$$

or

$$
\begin{equation*}
\frac{C_{n}(t+s)}{n!} \sim \frac{n^{t+s-1}}{\Gamma(t) \Gamma(s)} L(n) B(t, s) \tag{14}
\end{equation*}
$$

where $B(t+s)$ is the Beta function. Since it is well known that

$$
B(t, s)=\frac{\Gamma(t) \Gamma(s)}{\Gamma(t+s)}
$$

equation (14) implies (10).
Corollary 2
If $t_{k}=t$ for $k=1,2, \ldots, 0<t<1$, then

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{C_{k}(t)}{n!} \sim \frac{1}{\Gamma(t+1)} n^{t}, \text { as } n \rightarrow \infty, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{C_{n}(n)}{n!} \sim \frac{1}{\Gamma(t)} n^{t-1}, \text { as } n \rightarrow \infty \tag{16}
\end{equation*}
$$

Proof: In this case, the exponential generating function of $C_{n}(t, \ldots, t)$ is written

$$
\begin{equation*}
\exp u C=(1-u)^{-t} \tag{17}
\end{equation*}
$$

as it is well known [2, p. 70].
Applying Theorem 5 [1, p. 447] to (17) we get (15), and since the sequence

$$
\left\{\frac{C_{n}(t)}{n!}\right\}, n=1,2, \ldots,
$$

is monotonic decreasing [2, (11), p. 71], relation (17) is equivalent to (16).
Remark 1: Concerning the same probability problem as that in [2, p. 71], $C_{n}(t) / n!$ is the generating function of certain probabilities.

Using equation (16), we can easily verify by differentiating that

$$
\mu \sim \log (n)+\gamma, \text { as } n \rightarrow \infty,
$$

where γ is Euler's constant and

$$
\sigma^{2} \sim \log n+\gamma+\zeta(2),
$$

where $\zeta(2)$ is the Riemann Zeta function which, in this special case, is equal to $\pi^{2} / 6$. Both these results agree with those obtained in [2, p. 72].

REFERENCES

1. W. Feller. An Introduction to Probability Theory and its Applications. Vol. II, 2nd ed. New York: Wiley, 1971.
2. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 1958.
