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It has been proved [7, Lemma 3] that an integer has the property that 

(x, m) = 1 implies x1 E 1 (mod m) iff TT?|24. 

To generalize this result, we make the following definition. 

Definition 1 

Let n be a positive integer. The integer m has property P(n) if and only 
if (x, m) = 1 implies xn = 1 (mod m) . 

In §1 we shall determine, for n > 1, all integers which have property P(n); 
in §2 we shall prove some consequences of an integer having property P(ri) or a 
similar property. 

1. INTEGERS HAVING PROPERTY P(n) 

In Theorem 2, we shall show that the only integers having property P(n), 
where n is an odd positive integer, are -2, -1, 1, and 2. In Theorem 3, we 
shall determine the integers which have property P(n) , where n is an even posi-
tive integer. In particular, we shall show that: 

m has property P(4) iff m divides 240 = 2̂ 3 -5 

m has property P(6) iff m divides 504 = 2332 * 7 

m has property P(8) iff m divides 480 = 25 • 3 • 5 

77? has property P(10) iff m divides 264 = 233 • 11 

77? has property P(12) iff 777 divides 65,520 = 24325 -7-13 

Theorem 2 

Let n be an odd positive integer. The integer m has property P(n) iff m\2. 

Proof: Assume that m has property P(n), where n is an odd positive inte-
ger. Thus, since (-1, 77?) = 1, 

1 E (-l)n E -1 (mod 777). 

Therefore, 77?12. Clearly, m\2 implies that 77? has property P(n) . 

Theorem 3 

Let n be an even positive integer and let the distinct odd primes p which 

are such that <f>(p)|n be denoted by p1? p- , ..., p . Choose e such that 2e|n, 

and for i = 1, 2, ...,£, choose e^ such that (|>{pe0 | n 'and cj)(pei + 1) | n. The 

integer m has property P(n) iff m\2e+2p^1p^2 ... pe*. 
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On page 47 of [2], it is stated that the integer 

2e + 2pe^p^ . . . pe* 

defined in Theorem 3 is the largest integer to have property P(n). Given a 
positive integer n9 Theorems 2 and 3 enable us to find all integers m that have 
property P(n) . Given an integer m9 Theorem 2 of [1] and its proof enable us to 
find all positive integers n such that m has property P(n). An earlier refer-
ence is Theorem 4-9 of [4]. 

We shall need the following two lemmas to prove Theorem 3„ 

Lemma 4 

Let d, 777, n be integers with n positive. If 777 has property P(n) and d\m9 
then d has property P{ri) . 

Proof: Without loss of generality, assume d > 1 and 777 > 1. Let 

777 = q^q** ... <?«*, 

where q±9 q2> ..., qt are distinct primes and e±9 el9 ..., et are positive in-
tegers. Also let q19 q29 . .., q- 9 where 1 < j < t9 be the distinct primes that 
divide d. We shall now prove that d has property P(n). Thus, let (a, d) = 1. 
Choose b such that 

b = a (mod q**qe* ... qV) and b E 1 (mod ^ ^ .e. qrj*). 1 2 j j +1 t 

Since (2?, 777) = 1 and 777 has property P(n), &n = 1 (mod 777). Therefore, since 
a E b (mod ^) and d\m9 an E Z?n = 1 (mod d) . 

A proof of the next lemma can be found, for example, in [6, pp. 104-105]. 

Lemma 5 

Let e be a positive integer. We have that: 

(i) a2 E l (mod 2e+2) for all odd integers a. 

(ii) 5 belongs to the exponent 2e modulo 2e+ 2. 

Proof of Theorem 3: First assume that the integer 777 has property P(n) . We 
shall show that 

m|2* + 2p^p'»... p^ 

by showing that: 

(i) 2e + 3 does not divide 777, 

(ii) for i = 1, 2, , t9 p&i+1 does not divide 777, and 

(iii) the only odd primes that may possibly divide 77? are p±9 p2> ..., pt . 

If 2e + 3|777, then by Lemma 4, 5M = 1 (mod 2e + 3 ) . But since 5 belongs to the 

exponent 2e+1 modulo 2e+3
9 we have the contradiction 2e+1|n. 

Now suppose pfi+1\m and let a: be a primitive root modulo pfi + 1. By Lemma 4, 

xn E 1 (mod pfi + 1 ) . But this is impossible since (f>(pfi + 1) does not divide n. 
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Similarly, suppose there is an odd prime p such that p\m and p ^ Pi for 
t - 1, 2, ...,£, and let x be a primitive root modulo p. By Lemma 4S #n E 1 
(mod p) . But this is impossible since (j>(p) does not divide n. 

Conversely, assume 

m\2e + 2 p e
1

1 p e
2 * . . . p** . 

Thus, by Lemma 4, it is sufficient to prove that 2e+2p&1 p&1 . . . p_f* has property 
P(n). So assume 

(<*, 2 e + V 1 P S 2 - - - P!*> = !• 
1 2 t 

Thus (a, 2) = 1 , so by Lemma 5, a2 = 1 (mod 2 e + 2 ) . Also, for £ = 1, 2, . .., t, 
(a, pf1') = I, so by the Euler-Fermat theorem, 

aHp^ '= 1 (mod pf*). 

Since 2e|n and 4>(pf*) |n for £ = 1, 2, . .., t, an = 1 (mod 2e+2) and an = 1 (mod 
pf*) for i = 1, 2, ..., t. Therefore, 

an = 1 (mod 2e + 2 p^p^... p«t). 

2. SOME CONSEQUENCES OF P(w) 

We shall now consider some consequences of an integer m having property 
P(n) or a similar property. Our first result shows that an integer m having 
property P(n) puts a restriction not just on the nth powers of the integers 
relatively prime to m but on the nth powers of all integers. 

Theorem 6 

Let m and n be integers with n > 2. The following four conditions are 
equivalent: 

I. m has property P(n). 

II. For all integers a, b9 k, where k is positive, 
akn + &fen E a?cn£fcn + ( a ? ^jfcn ( m o d m ) # 

III. For all integers a, 

an = (a, w) n (mod m). 

TV. For all integers a and 2?, if (a&, m) = (&, m) , then, for all positive 
integers k3 

aknb = £> (mod m) . 

Theorem 6 is not true for n = 2; for n = 2,m = 24,fc==l, a = 1 0 , and b = 
14. I is true but II is false. 

For Theorem 6, we clearly have that III implies I. Also, by letting b = m 
and k - 1 in II, we see that II implies III and, by letting b = 1 and k = 1 in 
IV, we see that IV implies I. We shall complete the proof of Theorem 6 by 
showing that I implies II and that I implies IV. To show that I implies II, we 
shall need the following lemma, which, for the case ab = 0 (mod m) and k = 1, 
was proved in Theorem 13 of [1], 
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Lemma 

Let n be a positive integer. If m has property P(n) and (a, b) = 1, then, 
for all positive integers ft, 

akn + hkn Eaknbkn + x ( m o d m) ^ 

Proof: Choose d and e such that 

de = w, (d, e) = 15 (as d) = 1, and (&, e) = 1. 

We can do this as follows: If (b, m) = 1, let d = 1 and e = m. Otherwise, let 
pl5 p23 ...,pt be the distinct primes that divide both b and 777 and, for i = 1, 
2, . .., t, choose e1, e2, ..., et such that p&i\m. Just let 

d = p^pl*-.. p** and <5 
77? 

2 e e ° ^ t — ~ d' 

Since d|m, d has p r o p e r t y P(n) . Thus, akn = 1 (mod d) . S i m i l a r l y 2^ n E 1 
(mod e). T h e r e f o r e , 

0 = (a&« - l ) 0 > k n - 1) = aknbkn - akn - bkn + 1 (mod TW) . 
That i s , 

a k " + bkn E £*"£>** + 1 (mod m). 

Proof that i Implies 1 1 

Assume that m has property P(n) and let a, b, ft be integers with ft posi-
tive. Let px, p2, ..., pt be the distinct primes that divide all three of a, 
b9 m and, for i = 1, 2, ..., £, choose ê  such that pfi\\mB Thus, there is an 
integer o such that 

m = P^pl*--. P^O, (a, b, o) = 1, and (c, ^ = 1. 

In addition, since m has property P(n) and n > 2, e^ < n for i = 1, 2, ..., t. 
We shall prove that I implies II by showing that 

akn + bkn a n d afcn^/cn + ( a ? b)kn 

are congruent modulo c and modulo m/c. 
Since o has property P(n), the preceding lemma implies that 

nkn -ukn nkn-ukn 
a D - a o + x (inod ^ 

(a, b)kn (a, 2>)kn (a, « 2 k n 

and ((a9 2?), c) = 1 implies that 

(a, Wfen E 1 (mod c). 

These two congruences imply that 
akn + bkn = afenZ?/cn + ( a $ h)kn ( m o d ^j # 

S ince , for i = 1, 2, . . . , t, pi | ( a , b) and e^ < n < ftn, ( a , 2>)*n = 0 (mod 
m/c). Hence, akn, &few, and aknbkn axe a l s o congruent t o 0 modulo 777/(2. Thus, 

akn + frkn E Q = aknbkn + ^ b)kn ( m o d ^ / ^ ^ 

Proof that 1 implies IV 

Assume that m has property P(n) and that (ab> m) = (b, m). Since 
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(b9 m) = (ab, m) = (ab, m(a, 1)) = (ab, am, m) 

= (a(b, m), m) = (2?, w)(a, /fcf m) )' 

have that 1 = (a, -TT v-J * Thus, 

(mod TF7m)\ 

akn = 1 

Therefore, aknb = b (mod m). 

The equivalence, for k = 1, of I and III in Proposition 7, below, implies 
Corollary 3.1 of [5]. 

Proposition 7 

Let m, n, 2» be integers where n and P are positive and m has property P(n). 
The following three conditions are equivalent: 

I. m is (r + 1) power-free. 

II. For all integers a, (ap, m) = (ar+1, w). 

III. For all integers a and all positive integers k, akn+r = ap (mod m). 

Proof: It is easy to show that I and II are equivalent. Now, II implying 
III follows from the equivalence of Theorem 6(1) and Theorem 6 (IV) with b = ar. 
To prove that III implies II, assume that an + r = ar (mod ni) . Therefore, 

(ar, m) = (an + r, m) > (ar+1, m) > (ar, m). 

Proposition 8 

Let k, m, n be integers such that k and n are positive,m has property P(n), 
and m is (/c, n) + 1 power-free. For every integer a, if the congruence 

xCk,n) E a ^mod mj 

has a solution, then congruence xk = a (mod m) has a solution. 

Proof: Let a be an integer and assume that the congruence 
xik.n) = a (mod m) 

has a solution, say a? = b. There are positive integers u and w such that 

ku = nw + (k, n). 
Thus, by Proposition 7, 

2>k" = 2>""+(*'n> = &(k'n) E a (mod m). 

Therefore, the congruence xk = a (mod m) has a solution, for example, x - bu. 

The restriction "m is (7c, n) + 1 power-free" is needed in Proposition 8. 
In general, for a prime p, if p(k»n)+1 divides m and fc > (k, n) , then the con-
gruence 

a-Ocn) = pik,n) ( m o d m ) 

will have a solution, but the congruence 
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xk = p(k,n) ( m o d w ) 

will not have a solution. This is so because, for p a prime, 

p(k>n) + 1\m, xk = p(k>n) (mod m)9 and k > (fc, n) 
imply the contradiction 

Our next result is a generalization of Theorem 1 of [3]. 

Theorem 9 

Let c, d, m, n be integers with n positive and (cd, m) = 1. The following 
two conditions are equivalent. 

I. For all integers ts if (£, m) = ls then 

(tn - cn)(tn - dn) = 0 (mod Hz). 

II. For all integers, a and /3, if ab E od (mod 77?) , then 

an + bn E cn + dn (mod 777). 

Proof: First assume I and assume ab E od (mod 777). Thus, 

(a, 7??) < {ab, m) = (c<i, 777) = 1. 
Hence, by I, 

0 E ( a n - <?n)(an - dn) = a2 n - a n d n - anan + <?ndn 

E a2n - andn - a n c n + anbn = a n ( a n - dn - c n + 2>n) (mod 777). 
Therefore, since (as m) = 1, 

an + &n = cn + dn (mod 777). 

Conversely, assume II and assume (£, 77?) = 1. Thus, there is an integer a 
such that at E c?d (mod 777). Hence, by II, 

an + tn E on + <fn (mod 777). 
Therefore, 

0 = 0tn E (tn - dn - on + an)tn = t2n - dntn - £nin + antn 

E t2n .- <intn - <?n£n + cnJn = (tn - on)(tn - dn) (mod 777). 

Theorem 10 

If an integer 777 has property P(2k), where k is a positive integer, then 
there is an integer o such that (£, 77?) = 1 implies 

(tk - ok)(tk - lk) E 0 (mod 777). 

Proof: Assume 777 = p^p^2... pej" has property P(2k) . We can choose c such 

that c E Qt (mod pfO for i = 1, 2, ..., J, where c]L, e2, ..., ̂  are chosen as 

follows: 

For p. = 2, #£ = 1 if k is an even integer and <?/ = 3 if k is 
an odd integer. For p^ an odd prime, oi = 1 if pf* has prop-
erty P(fc); otherwise, choose ^ such that ok E -1 (mod pf*). 
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The converse of Theorem 10 is false. A counterexample is k - 2 and m = 64. 
We do have that (t, 64) = 1 implies that 

(t2 - 1)(£2 - 1) E 0 (mod 64), 

but 64 does not have property P(4). The reason (t2 - 1)(t2 - 1) E 0 (mod 64) 
is because t odd implies 8|(t2 - 1 ) . 

The next theorem is a generalization of Theorem 2 of [3]. 

Theorem 11 

Let k be an odd positive integer. The following two conditions are equiva-
lent . 

I. There is an integer d such that if ab = d (mod rri), then 

ak + bk s I + dk (mod m). 

II. m has property P{2k). 

Proof: Assume I and assume (x, rri) = 1. Thus, there is an integer y such 
that xy E d (mod rri). Since xy E d (mod m) and (-1)(-d) E d (mod m) , by I, 

xk + yk E 1 + dk (mod rri) (1) 
and 

-1 - dk E (-l)k + (-d)k E I + dk (mod 777). (2) 

If m is an odd integer, then by (2), dk E -1 (mod 77?). Hence, by (1), 

Therefore, 
x2k E -xkyk E -dk E 1 (mod TT?) . 

If m is an even integer, then since {x, rri) - 1 and by (2), 2 divides #k - 1 
and 777/2 divides dk + 1. Thus, 

0 E (dk + l)(*k - 1) = dkxk - dk + xk - l (mod m). (3) 

T h e r e f o r e , by (1) and ( 3 ) , 

x2k E xk(l + d^ - yk) = #fc + dkxk - x ^ 
E ^ + d V - dk E 1 (mod 777) . 

Now assume 777 has property P(2k) . To prove I, we will prove that if ab = -1 
(mod 777), then ak + bk E 0 (mod m) . Therefore, assume a/3 E -1 (mod 777). Hence, 
(a, 77?) = 1. Thus, 

0 E a2k - 1 E a2k + (ab)k = ak(ak + bk) (mod 777). 

Since (a, 777) = 1, this implies that ak + bk = 0 (mod 777). 
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LETTER TO THE EDITOR 

Dear Dr. Bergum: 

A paper by Charles R. Wall entitled "Unitary Harmonic Numbers" appeared in 
the February 1983 issue of The Fibonacci Quarterly. We thought you might be 
interested in knowing that a paper with the same title and similar content was 
published by us (P. Hagis & G. Lord) in the Proceedings of The American Mathe-
matical Society, v. 51, 1975, pp. 1-7. Comparing Wall's results with ours, you 
will see that both of Wall's theorems contain minor errors. Thus, there are 45 
(not 43) unitary harmonic numbers less than 106, including 1512 = 23337 and 
791700, both of which were missed by Wall. And, since 0)(1512) = 3, there are 
24 (not 23) unitary harmonic numbers n for which 0)(n) ̂  4. 

It should also be mentioned that Wall's conjecture that "there are only 
finitely many unitary harmonic numbers with a)(n) fixed" is Theorem 2 in our 
paper. 

Sincerely, 

Peter Hagis, Jr. 

Graham Lord 

RESPONSE 

Dear Dr. Bergum: 

Professors Hagis and Lord are correct in their observations. The omission 
of 1512 and 791700 resulted from an oversight which is entirely my responsi-
bility. The duplication of their earlier work was unfortunate but done in in-
nocence; it is doubly unfortunate that neither the referee nor I was aware of 
the earlier paper. 

Independent but duplicate results are inevitable. One hopes that a re-
invented wheel is in some way superior; in this case, alas, the earlier model 
was better in all respects. I apologize to you and to readers of The Fibonacci 
Quarterly. 

Sincerely, 

Charles R. Wall 
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