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1. INTRODUCTION 

A recursive definition of a function / is called nested if, in the defini-
tion body, the function f is called with an argument whose evaluation involves 
yet another call to function /. A famous example of such a nested recursive 
definition is "McCarthy's 91-function" 

f(n) 

whose solution 

fin) 

fifin + 11)) 0 < n < 100 

n - 10 n > 100 

91 0 < n < 100 

n - 10 n > 100 

is described in [2, p. 373]. Such recurrences seem difficult to understand and 
solve, and general solution techniques are lacking. 

In this paper a complete solution is developed for the family of nested 
recurrences (one for each integer k > 0) given by 

( n ~ Gk(9k(n - k)) n > I 
9k(n) ={ (1.1) 

( 0 n < 0. 

For the case k = 1, this recurrence is mentioned in [1, p. 137], where its be-
havior is described diagramatically. 

The functions g±(n) and g2(n) are plotted in Figures 1 and 2. 
Recently Meek and van Rees [3] have examined the recurrence family 

fr(n) = n - £(/,(... (fr(n - 1)) ... )), n > 1 

where fr is nested to r levels and fr(0) = 0. In [3] the solution for fr(n) is 
expressed indirectly through a transformation: n is represented as a general-
ized Fibonacci base numeral (dependent on r), the least significant digit of 
this representation is truncated, and the resulting Fibonacci base numeral rep-
resents fr(n) . In this paper we give a closed form solution for /^(n), which 
is g±(n) in our notation. The problem of finding a closed form for fr{n), r ^ 
3, remains open. 

The approximate behavior of gk(n) is easy to describe. Figures 1 and 2 
suggest looking for an asymptotic approximation to the solution having the form 
gAn) - An + 0(1). Substituting this into (1.1) and equating coefficients of 
n on both sides yields 
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gk in) = \pn + 0(1) as n (1.2) 

where \p = (YE - l)/2 is the reciprocal of the "golden ratio" <j).* The relation-
ship between gk(n) and the line \pn is even closer than the asymptotic estimate 
(1.2) would indicate, since Theorem 1 states 

(n) 
fc-i n + i + if; (1.3) 

Thus, ^x(n) = []p(n + 1)J is the function described in [1]. This function 
has an interesting number-theoretic property: Theorem 2 shows that the points 
at which g An) increases form a Beatty sequence. 

2. SOLUTION 

Let us first give a solution for the function g1(n). From it, we general-
ize the solution of (1.1). 

Figure 1 shows that while the line tyn must miss all the integral lattice 
points, the values of g1(n) fall on lattice points near the line. This behav-
ior suggests looking for a solution of the form g1in) = \jpn + C\ . If one sub-
stitutes this form into (1.1) with k - 1 and performs calculations similar to 
those in Lemma 1 below, it emerges that a choice of C = f will cause the equa-
tion to balance. Turning this calculation around into a proof yields the fol-
lowing Lemma, which shows that g1(n) = \tyn + ipj . This result is also needed in 
the proof of Theorem 1. 

FIG. 1. Plot of g1(n) for 0 < n < 20. The values of the function are 
indicated by heavy dots. The dashed lines are present only to 
facilitate interpretation. Superimposed on the function is 
the straight line tyn. 

Lemma 1 

For a l l n > 0 , \tyn + ipj = n - |_xp \tyn\ + ipj . 

*(j) is the positive root of (f)2 - (f) - 1 = 0 , while ty 
tive root of tyz + }p - 1 = 0 . 

(2 .1 ) 

1 is the posi-
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Proof: Let tyn = \]pn] + e, where e = \pn mod 1, the fractional part of ^n. 
First, we note that e can never equal ty2. For suppose ipn = [̂ nJ + ^2 f° r some 
n. Then tyn - ty1 = ipn - (1 - ip) = \|j(rc + 1) - 1 is an integer, and i|;(n + 1) is 
an integer for some n, which is clearly impossible. 

Now (2.1) is equivalent to the assertion 

[tyn + ipj + [}K^n - e) + î J = n . 
This i s e q u i v a l e n t t o 

\ipn + \p_| + L^2^ - ^e + ipj = n . 
S ince ip n = n - jpn, we may cance l t h e i n t e g e r n , y i e l d i n g 

or 
\pi + ty\ + [-^n - x̂ e - ipj = 0 , 

LL^J + e + Ĵ + |_""|jM ~ e " ^e + ^J = °-
Cancelling the integers from inside the floor functions, this is equivalent to 

[e + ip] + [* " £(1 + *)J = 0. 
This last identity can be seen to hold for all £ ^ if;2 in the interval (0, 1) as 
follows: The argument of the second floor term is linear in e, decreasing over 
(0, 1), with a zero at e = ̂ 2. In case e < î 2, both terms yield zero, because 
the arguments of each floor are positive and less than 1. In case e > ip2, the 
first term is 1 and the second is -1. • 

Next, we turn to the solution of gz, defined by g2(n) = n - g2(g2(n - 2)). 
At even arguments n = 2m 9 we have 

g2(2m) = 2m - g2(g2(2(m - 1))). (2.2) 

Define the function h via 

g2{2i) = 27z(£). (2.3) 

Then (2.2) can be written 

2h(m) = 2m - g(2h(m - 1)) = 2m - 2h(h(m - 1)), 

by using (2.3) again. Thus 

h(m) = m - h(h(m - 1)) 

w i t h h(0) - 0 and so h(m) = g1(m) = \$>m + ty]. P u t t i n g t h i s i n t o (2 .3 ) and u s -
ing n = 2m y i e l d s f i n a l l y 

gSn) = 2 n even. (2 .4 ) 

To solve for odd arguments n is not so straightforward. But an examina-
tion of Figure 2 shows that the values of g (n) at odd n seem to lie on a 
straight line between the neighboring values at even arguments. This observa-
tion suggests that the solution is the "average" of the two nearest even argu-
ment values, or 

* 
n 

_2_ + * + i> g2(n) = liM^ I + iM + I* ! Lr- t| + * n > 0. 

This expression is certainly consistent with (2.4). That this is indeed 
the solution is established by an induction argument. In fact, the "natural" 
generalization of this expression, given by (2.7), will be shown in Theorem 1 
to satisfy the general recurrence (1.1). 
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FIG. 2. Plot of g2(n) for 0 < n < 20. The values of the function are 
indicated by heavy dots. The dashed lines are present only to 
facilitate interpretation. Superimposed on the function is 
the straight line ipn. This function appears to be a "scaled 
up" version of Figure 1. 

The following lemma is needed for the induction of Theorem 1. 

Lemma 2 

For all n > 0, 0 < gk(n) < n. (2.5) 

Proof: By induction on n. The base 0 < n < k is easily checked, since 

gk(n) = n 
for arguments in this range. Assume that n > k and that (2.5) holds for all 
0 < i < n. We will establish (2.5) for n. Now 

gk(n) = n - gk(gk(n - /<)). (2.6) 

Let i = gk(n-k) . By the induction hypothesis for n- fc, we have 0 < i < n - fe, 
and so by the induction hypothesis for i , 0 < gk(i) < i , that is, 

o < gk(gk(n - *0) < ^k(« - fe). 
Using this inequality with (2.6) yields 

n - gh(n - k) < gk(n) < n, 
and, since n - k - gAn - k) > 0 by the induction hypothesis, the result (2.5) 
follows for n. s 

Now to the main result. 

Theorem 1 

The solution to (1.1) is given by 

\n + i k-l 
gAn) = E + ip , n > 0. (2.7) 
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Proof: By induction on n. The base 0 ̂  n < k can be checked directly, as 
gk(ji) = n for arguments in this range. Assume that n ^ k and that (2.7) holds 
for all 0 < i < n. We will establish (2.7) for n. 

By the induction hypothesis, 

k-l 
in - k) = £ 

i = o 

n + i (2.8) 

Suppose that n = qk + r with remainder 0 < r < k. Then the first & - v of the 
quotients 

n 
k\ 

9 
n + 1 

L fc j 
, . . . , n + k -

L & 
- 1 

are equal to q and the remaining v quotients are equal to q + 1. Thus, 

gAn - k) = (k - r) [tyq\ + r \$q + ipj . 
and similarly 

k-l n + + if, = (k - r) [}pq + i/;J + p[*<7 + 2ipJ . 

(2 .9 ) 

(2 .10) 

We would l i k e t o show t h a t gk(n) i s equa l t o ( 2 . 1 0 ) . There a r e two ca se s 
t o c o n s i d e r . 

Case \tyq + ipj = \$q] : Then i t fo l lows t h a t 

[if/? + 2i|;J « 1 + [ifa + *J > 
and by ( 2 . 9 ) , g~(n - k) = k[tyqj. But t h e n a l l t h e q u o t i e n t s 

gk(n - k) + i 
, 0 < i < k 

(2.11) 

(2.12) 

are identically equal to \tyqj . Since gk(n - k) *^n - k by Lemma 2, the induc-
tion hypothesis (2.7) holds with argument set to gk(n - k) s and so using the 
equality of all the quotients (2.12) 

gk(gk(n - k)) = fcL*W + '*J- (2.13) 
By Lemma 1, the right side of (2.13) is &(<?- |_̂q + ipJ) , and using this fact in 
(1.1): 

^(w) - w - ?k(^(n - k)) <* qk'+ r - gk(gk(n - k)) = r + fe^'+ *J.' (2.14) 
Using (2 .11) i n (2 .10) g i v e s agreement w i t h t h e e x p r e s s i o n for g (n) i n ( 2 . 1 4 ) , 
e s t a b l i s h i n g t h e s t e p i n t h i s c a s e . 
Case \_tyq + ij;J = \tyq] + 1:' In t h i s case (2 .9 ) y i e l d s 

gk(n - fc) = fe[*?J + r * (2 .15) 
Because of ( 2 . 1 5 ) , we o b t a i n 

gk(n - k) + i 

gk(n - k) + i 

\$q\>- 0 . < i < k - r 

\$q] + 1, k - r < i < k 

(2 .16) 

314 [Nov. 



ON A FAMILY OF NESTED RECURRENCES 

Lemma 2 guarantees that gk(n - k) < n - k, so the induction hypothesis (2.7) 
holds with argument gk(n - k). Along with identities (2.16), this gives 

Gk(&k(n - *0) - (k - r)\_^q\ + *J + r\$\$q\ + 2*J , 
which in light of the case assumption can be rewritten 

9k(gk(n - k)) = (k - r)[*M + ̂J + *L*bK<7 + Dj + *J- (2.17) 
Now apply Lemma 1 to each of the terms in (2.17), and simplify to obtain 

gk(gk(n - k)) = kq + r - (k - r) [\pq + ipj - r|>7 + 2*J • (2.18) 

From this, using the recurrence (1.1), 

gk(n) = n - gk(gk(n - k)) = (k - r) |>7 + ipj + r|>7 + 2^J . (2.19) 

and this is seen to be just (2.10), as required. This case completes the in-
duction and the proof of (2.7). m 

3. THE DISTRIBUTION OF TRANSITION POINTS FOR g1(n) 

Let 

Vf(n) = f{ri) - f(n - 1), n = 1, 2, 3, ... 

be the "backward difference" sequence of the function f(n), n = 0, 1, 2, ... . 
The values of n for which V/(n) ^ 0 are called the transition points of / and 
the sequence Tf of the values of n for which V/(n) ^ 0 is called the transi-
tion sequence for /. 

Successive values for g\(n) clearly can differ by at most one. That is, 
SJg1 is a sequence of zeros and ones. As observed in Figure 1, the distribution 
of transition points for g±(ri) also shows considerable regularity. In fact, 
Theorem 2 establishes that Tg is the Beatty sequence [4, pp. 29-30] for the 
"golden ratio" <\> = ty + 1. 

Beatty sequences are defined as follows: if a and 3 are positive irration-
als such that 

then the two sequences 

Ba = {|_a|, [2a], L3aJ » •••> and B& = < lAl > L2$]> L3$J > •••> 
are mutually exclusive and together contain all the positive integers without 
repetition. A proof may be found in [5, §12.2], 

If a = c(), then 3 = <f> + 1 an(l t n e two complementary sequences are 

B^ = {1, 3, 4, 6, 8, 9, 11, 12, 14, 16, ...} 
and 

5<j> + i = { 2 > 5> 7> 1 0 > 1 3 > 1 5 > 1 8 » •'•*• 

In order to show that Tg = B$ , we establish the following identities. The 
first states that the function g±(n) is the inverse of Beatty!s function \j>n], 
and that transitions do occur at points in the sequence B$. 

Lemma 3 

0i(LH - i) = ^ - i 
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Proof: L^J = LW + ^ nJ = l_̂ nJ + n> hence 

g1{\_^n\) = ̂ ( [ H + n) = |jKLH + ^ + 1)J 

by Theorem 1. Using ipn = \pi\ + e, 

where we have used ip2 + i\) ~ 1. 
For the second identity, note that 

L^nJ - i = L(^ + 1 ) n - *J = bKl + n " 1 

so tha t 
0 i ( L H - D = b K b H + n>J = L*2n + #* - *(e)J 

= |_n - i/;(e)J = n - 1. a 

Lemma 4 
Let e = tyn mod 1 be the fractional part of tyn. Then for all n, 

L^n + ^K1 - e)J = L H = L^n - * e J - (3-1> 
Proof: Obviously 0 < ip(l - e) < 1 - e, and so 

ijm < tyn + ip(l - e) < if;n +. 1 - e . 
Since i(jn = [ijwj + e , 

[ipnj + e < pi + ip(l - e) < [ J H + 1» 
and so it follows that \tyn\ = |_̂ n + ^(1 -£)_], establishing the first equality. 

Next, notice that 

pi - p = [pi] + e (1 - ip) . 

Since 0<e(l-i(;)<l, the second equality follows. • 

The next lemma gives information about the points where g± does not have a 
transition. 

Lemma 5 

^([OJ* + l)nj) = giilW + DwJ ~ 1) = L<H- (3-2> 

Proof: Consider the first equality. Since cj) = if; + 1, by Theorem 1 this is 
equivalent to showing that 

\$.\pi + 2 n J + ^J = L H ^ + 2 n J J - ( 3 - 3 ) 
Now (3.3) is equivalent to showing 

L^bH + 2n^ + ^J = L^ijH + 2n^J* ( 3 - 4 ) 
Let i(#2 = jjj/ftj + e where e = pi mod 1. S u b s t i t u t i n g t h i s i n t o (3 .4 ) and s i m p l i -
fying u s i n g ty1 + ty- = 1 shows t h a t (3 .4 ) i s e q u i v a l e n t t o 

[n + ipn + ij;(l - e)J = \n + pi - p] . (3 .5 ) 
By Lemma 4, these expressions are equal, proving that (3.3) holds. 

Consider the second equality. By Theorem 1 this is equivalent to showing 
that 

\$\$n + 2nJJ = \jpn + n] , (3.6) 

which is equivalent to 
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L^W + 2 iH = \]Pn + n J - (3.7) 
Using t h e s u b s t i t u t i o n \tynj = i p n - e i n ( 3 . 7 ) , and s i m p l i f y i n g u s i n g ip2. + ty = 1 
shows t h i s i s e q u i v a l e n t t o 

[n + ipn - \pej = \tyn + nj . ' ( 3 .8 ) 

By Lemma 4, this last equality holds, and so (3.6) holds. • 

The connection with the Beatty sequence can now be made. 

Theorem 2 

\ = V 
Proof: By Lemma 3 , 

^ i (LH) - #i(LH - i) = i 
so t h a t |_<f>nj a r e t r a n s i t i o n p o i n t s co r respond ing t o B$, wh i l e by Lemma 5 

^ ( L ( * + DnJ) - ^i(*L(* + Djw - . 1 ) = °> 
so that the nontransition points [_(((>+ l)nj correspond to S^+1. By the proper-
ties of Beatty sequences, B± and -B^+1 include all the positive integers, n 
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