PELL NUMBERS AND COAXAL CIRCLES

A. F. HORADAM
University of New England, Armidale, N.S.W., 2351, Australia (Submitted January 1983)

1. INTRODUCTION

The purpose of this note is to generalize the results in [2] and to apply them to the particular case of Pell numbers. An acquaintance with [2] is desirable.

Define the generalized sequence $\left\{W_{n}\right\}$ by

$$
\begin{equation*}
W_{n}=p W_{n-1}-q W_{n-2}, W_{0}=r, W_{1}=r+s \tag{1.1}
\end{equation*}
$$

for all integral n, where p, q, r, and s are arbitrary, but will generally be thought of as integers.

Then, from [1], mutatis mutandis,

$$
\begin{equation*}
W_{n}=\frac{(r+s-r \beta) \alpha^{n}-\{(r+s)-r \alpha\} \beta^{n}}{\Delta}, \tag{1.2}
\end{equation*}
$$

where α and β are the roots of $x^{2}-p x+q=0$, so that $\alpha+\beta=p, \alpha \beta=q$, and $\alpha-\beta=\Delta=\sqrt{p^{2}-4 q}$.

The generalized sequence $\left\{H_{n}\right\}$ in [2] occurs when

$$
p=1, q=-1, \Delta=\sqrt{5}, r=2 b, \text { and } s=a-b,
$$

with the special cases of the Fibonacci sequence $\left\{F_{n}\right\}$ and the Lucas sequence $\left\{L_{n}\right\}$ arising when $a=1, b=0$ (i.e., $r=0, s=1$) and $a=0, b=1$ (i.e., $r=2, s=-1$), respectively.

Our particular concern in this note is with the case $p=2, q=-1$, where $\alpha=1+\sqrt{2}(>0), \beta=1-\sqrt{2}(<0)$, i.e., $\Delta=2 \sqrt{2}$.

Writing W_{n}^{\prime} for W_{n} when $p=2, q=-1$, we have from (1.2) that
where

$$
\begin{equation*}
W_{n}^{\prime}=s P_{n}+\frac{r}{2} Q_{n}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
P_{n}=\left(\alpha^{n}-\beta^{n}\right) / 2 \sqrt{2} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}=\alpha^{n}+\beta^{n} \tag{1.5}
\end{equation*}
$$

and

$$
e_{n} \quad \because
$$

are the $n^{\text {th }} \mathrm{Pell}$ and the $n^{\text {th }}$ "Pell-Lucas" numbers, respectively, occurring in (1.1), (1.2), and (1.3) when $r=0, s=1$ (for P_{n}) and $r=2, s=0$ (for Q_{n}). From (1.4) and (1.5), we have

$$
\begin{equation*}
2 \sqrt{2} P_{n}<Q_{n} \text { when } n \text { is even }, \tag{1.6}
\end{equation*}
$$

$2 \sqrt{2} P_{n}>Q_{n}$ when n is odd.
2. COAXAL CIRCLES FOR $\left\{W_{n}\right\}$

Consider the point $(x, 0)$ in the Euclidean plane with

$$
\begin{equation*}
x=\left[(r+s-r \beta) \alpha^{2 n}+(-(r+s)+r \alpha) \cos (n-1) \pi\right] / \Delta \alpha^{n} \tag{2.1}
\end{equation*}
$$

The circle $C W_{n}$ having

$$
\begin{equation*}
\text { center } \quad \bar{x}\left(W_{n}\right)=\frac{(r+s-r \beta)}{\Delta} \alpha^{n}, \bar{y}\left(W_{n}\right)=0 \text {, } \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { radius } \quad r\left(W_{n}\right)=\left|\frac{-(r+s)+r \alpha)}{\Delta \alpha^{n}}\right| \tag{2.3}
\end{equation*}
$$

has the equation

$$
\begin{equation*}
\left(x-\frac{(r+s-r \beta)}{\Delta} \alpha^{n}\right)^{2}+y^{2}=\left(\frac{-(r+s)+r \alpha}{\Delta \alpha^{n}}\right)^{2}, \tag{2.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\bar{x}\left(W_{n}\right) / \bar{x}\left(W_{n-1}\right)=\alpha \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
r\left(W_{n}\right) / r\left(W_{n-1}\right)=\frac{1}{\alpha} . \tag{2.6}
\end{equation*}
$$

The points of intersection of $C W_{n}$ and the x-axis are given by

$$
\begin{align*}
x\left(W_{n}\right) & =\frac{(r+s-r \beta) \alpha^{n}}{\Delta} \pm \frac{(-(r+s)+r \alpha)}{\Delta \alpha^{n}} \\
& =\left\{(r+s)\left\{\alpha^{n} \mp \frac{\beta^{n}}{q^{n}}\right\}-r q\left\{\alpha^{n-1} \mp \frac{\beta^{n-1}}{q^{n}}\right\}\right\} / \Delta . \tag{2.7}
\end{align*}
$$

Highest points on $C W_{n}$ lie on the upper branch of the rectangular hyperbola $x y=(r+s-r \beta)|(r+s-r \alpha)| / \Delta^{2}$.
3. COAXAL CIRCLES FOR $\left\{P_{n}\right\}$ AND $\left\{Q_{n}\right\}$

Proceeding now to the Pell numbers $P_{n}(1.4)$ and Pell-Lucas numbers $Q_{n}(1.5)$ we can tabulate results corresponding to the more general results (2.1)-(2.8) as follows.

Eq.	P_{n}	Q_{n}
(3.1)	$\left\{\begin{array}{l}x=\left\{\alpha^{2 n}-\cos (n-1) \pi\right\} / 2 \sqrt{2} \alpha^{n} \\ y=0\end{array}\right.$	$\left\{\begin{array}{l}x=\left\{\alpha^{2 n}+\cos (n-1) \pi\right\} / \alpha^{n} \\ y=0\end{array}\right.$
(3.2)	$\bar{x}\left(P_{n}\right)=\alpha^{n} / 2 \sqrt{2}, \bar{y}\left(P_{n}\right)=0$	$\bar{x}\left(Q_{n}\right)=\alpha^{n}, \bar{y}\left(Q_{n}\right)=0$
(3.3)	$r\left(P_{n}\right)=1 / 2 \sqrt{2} \alpha^{n}$	$r\left(Q_{n}\right)=1 / \alpha^{n}$
(3.4)	$C P_{n}:\left\{x-\frac{\alpha^{n}}{2 \sqrt{2}}\right\}^{2}+y^{2}=\frac{1}{8 \alpha^{2 n}}$	$C Q_{n}:\left(x-\alpha^{n}\right)^{2}+y^{2}=\frac{1}{\alpha^{2 n}}$
(3.5)	$\bar{x}\left(P_{n}\right) / \bar{x}\left(P_{n-1}\right)=\alpha$	$\bar{x}\left(Q_{n}\right) / \bar{x}\left(Q_{n-1}\right)=\alpha$
(3.6)	$r\left(P_{n}\right) / r\left(P_{n-1}\right)=\frac{1}{\alpha}$	$r\left(Q_{n}\right) / r\left(Q_{n-1}\right)=\frac{1}{\alpha}$
(3.7)	$x\left(P_{n}\right)=P_{n}, \frac{Q_{n}}{2 \sqrt{2}}$	$x\left(Q_{n}\right)=Q_{n}, 2 \sqrt{2} P_{n}$
(3.8)	$x y=\frac{1}{8}$	$x y=1$

Remarks about the circle-generation of Pell and Pell-Lucas numbers, similar to those made about results (3.7) in the tabulation in [2], may now be made about results (3.7) in the preceding table.

It is worth noting that the same locus $x y=1$ in (3.8) arises from both the Lucas numbers L_{n} [2] and the Pe11-Lucas numbers Q_{n}, although the two sequences of points on the hyperbola are different.

There do not appear to be any really interesting geometrical relations among the circles associated with F_{n}, L_{n}, P_{n}, and Q_{n}. In passing, we note that in (3.7) we use

$$
\begin{aligned}
& P_{n}+P_{n-1}=\frac{1}{2} Q_{n} \\
& Q_{n}+Q_{n-1}=4 Q_{n}
\end{aligned}
$$

both of which may be easily derived from (1.4) and (1.5).

REFERENCES

1. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3, no. 3 (1965):161-76.
2. A. F. Horadam. "Coaxal Circles Associated with Recurrence-Generated Sequences." The Fibonacci Quarterly 22, no. 3 (1984):270-72, 278.
$\diamond \diamond \diamond \diamond \stackrel{\rightharpoonup}{*}$
