SOME PREDICTABLE PIERCE EXPANSIONS

J. O. SHALLIT

University of Chicago, Chicago, IL 60637
(Submitted February 1983)

1. INTRODUCTION

In 1929, T. A. Pierce discussed an algorithm for expanding real numbers $x \in(0,1)$ in the form

$$
\begin{equation*}
x=\frac{1}{a_{1}}-\frac{1}{a_{1} a_{2}}+\frac{1}{a_{1} a_{2} a_{3}} \ldots, \tag{1}
\end{equation*}
$$

where the α_{i} form a strictly increasing sequence of positive integers.
He showed that these expansions (which we call Pierce expansions) are essentially unique. The Pierce expansion for x terminates if and only if x is rational. See [3] and [5] for details.

In this note, we give formulas for the α_{i} in the case where

$$
x=\frac{c-\sqrt{c^{2}-4}}{2}
$$

and $c \geqslant 3$ is an integer. For these numbers, Pierce expansions provide extremely rapidly converging series.
11. FINDING REAL ROOTS OF POLYNOMIALS

To save space, we sill sometimes write equation (1) in the form

$$
x=\left\{\alpha_{1}, \alpha_{2}, a_{3}, \ldots\right\}
$$

where the braces denote a Pierce expansion.
Let

$$
p_{1}(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

be a polynomial with integer coefficients and a single real zero α in the interval (0,1). We want to find the first term in the Pierce expansion of α. From equation (1) it is easy to see that $\alpha_{1}=\lfloor 1 / \alpha\rfloor$. Consider the polynomial $q_{1}(x)=x^{n} p_{1}(1 / x)$; this is a polynomial with integer coefficients that has $1 / \alpha$ as a zero. Through a simple binary search procedure, it is easy to find d_{1} such that

$$
\operatorname{sign}\left(q_{1}\left(d_{1}\right)\right)=\operatorname{sign}\left(q_{1}\left(d_{1}+1\right)\right)
$$

this shows that $d_{1}=\lfloor 1 / \alpha\rfloor$ and so we can take $\alpha_{1}=d_{1}$.
Now consider the polynomial

$$
p_{2}(x)=a_{1}^{n} p_{1}\left(\frac{1-x}{a_{1}}\right)
$$

This again is a polynomial with integer coefficients. It is easily verified that if β is a zero of $p_{2}(x)$, then

$$
\alpha=\frac{1}{a_{1}}-\frac{1}{a_{1}} \beta
$$

so

$$
\beta=\frac{1}{a_{2}}-\frac{1}{a_{2} a_{3}}+\cdots
$$

By repeating this procedure on the polynomial $p_{2}(x)$, we generate the coefficient α_{2} in the Pierce expansion of α, and by continuing in the same fashion, we can generate as many terms of the Pierce expansion for α as desired:

$$
\alpha=\frac{1}{a_{1}}-\frac{1}{a_{1} a_{2}}+\cdots
$$

Now let us specify our polynomial to be

$$
p(x)=x^{2}-c x+1,
$$

where $c \geqslant 3$ is an integer. Let α be the smaller positive zero, so

$$
\begin{equation*}
\alpha=\frac{c-\sqrt{c^{2}-4}}{2} . \tag{2}
\end{equation*}
$$

Now $q_{1}(x)=x^{2} p_{1}(1 / x)=x^{2}-c x+1$. We find $q_{1}(c-1)=2-c$, which is negative, and $q_{1}(c)=1$, which is positive. Hence, we see that $\alpha_{1}=c-1$.

Now

$$
p_{2}(x)=(c-1)^{2} p_{1}\left(\frac{1-x}{c-1}\right) ;
$$

hence,

$$
p_{2}(x)=x^{2}+\left(c^{2}-c-2\right) x+2-c .
$$

We find

$$
q_{2}(x)=x^{2} p_{2}(1 / x)=(2-c) x^{2}+\left(c^{2}-c-2\right) x+1 .
$$

Now $q_{2}(c+1)=1$, which is positive; but $q_{2}(c+2)=5-c^{2}$, which is negative. Hence, we see that $a_{2}=c+1$.

Now

$$
p_{3}(x)=x^{2} p_{2}\left(\frac{1-x}{c+1}\right)
$$

$$
p_{3}(x)=x^{2}-\left(c^{3}-3 c\right) x+1 .
$$

So far we have been following the algorithm. But now we notice that $p_{3}(x)$ is essentially just $p_{1}(x)$ with $c^{3}-3 c$ playing the role of c. We have found

$$
\alpha=\frac{1}{c-1}-\frac{1}{(c-1)(c+1)}+\frac{1}{(c-1)(c+1)} \gamma,
$$

where γ is the root of $x^{2}-\left(c^{3}-3 c\right) x+1=0$. By continuing this process, we get:

Theorem
Let α be as in equation (2). Then,

$$
\alpha=\left\{c_{0}-1, c_{0}+1, c_{1}-1, c_{1}+1, c_{2}-1, c_{2}+1, \ldots\right\}
$$

where $c_{0}=c, c_{k+1}=c_{k}^{3}-3 c_{k}$.
For example, let $c=3$. Then we find

$$
\frac{3-\sqrt{5}}{2}=\{2,4,17,19,5777,5779, \ldots\}
$$

Another example: let $c=6$. Then, after some manipulation, we find $\sqrt{2}-1=\{2,5,7,197,199,7761797,7761799, \ldots\}$.
Ironically, both Pierce [3] and Salzer [4] gave the first four terms of this expansion, but apparently neither detected the general pattern!

$$
\text { III. THE COEFFICIENTS } c_{k}
$$

The recurrence $c_{k+1}=c_{k}^{3}-3 c_{k}$ is an interesting one which has been previously studied ([1], [2]). Some brief comments are in order.

If we let α and β be the roots of the quadratic

$$
x^{2}-c x+1=0
$$

with $\alpha<\beta$, and define

$$
V(n)=\alpha^{n}+\beta^{n} ; U(n)=\frac{\alpha^{n^{\prime}}-\beta^{n}}{\alpha-\beta},
$$

then it is easy to show by induction that
where

$$
V(n)=c V(n-1)-V(n-2) ; U(n)=c U(n-1)-U(n-2)
$$

$$
V(0)=2, V(1)=c ; U(0)=0, U(1)=1
$$

We can also show that $V(3 k)=V(k)^{3}-3 V(k)$; hence, by induction, $c_{k}=V\left(3^{k}\right)$. This gives the following closed form for the c_{k} :

$$
c_{k}=\left(\frac{c+\sqrt{c^{2}-4}}{2}\right)^{3^{k}}+\left(\frac{c-\sqrt{c^{2}-4}}{2}\right)^{3^{k}}
$$

Similarly, it can be shown by induction that

$$
\begin{equation*}
\frac{U\left(3^{k}-1\right)}{U\left(3^{k}\right)}=\left\{c_{0}-1, c_{0}+1, c_{1}-1, c_{1}+1, \ldots, c_{k-1}-1, c_{k-1}+1\right\} \tag{3}
\end{equation*}
$$

Here is a sketch of the induction step. Assuming (3) holds, we find

$$
\begin{align*}
\left\{c_{0}\right. & \left.-1, c_{0}+1, c_{1}-1, c_{1}+1, \ldots, c_{k}-1, c_{k}+1\right\} \\
& =\frac{U\left(3^{k}-1\right)}{U\left(3^{k}\right)}+\frac{1}{U\left(3^{k}\right)}\left(\frac{1}{c_{k}-1}-\frac{1}{\left(c_{k}-1\right)\left(c_{k}+1\right)}\right) \\
& =\frac{U\left(3^{k}-1\right)}{U\left(3^{k}\right)}+\frac{1}{U\left(3^{k}\right)} \frac{c_{k}}{c_{k}^{2}-1} \\
& =\frac{U\left(3^{k}-1\right)\left(V\left(3^{k}\right)^{2}-1\right)+V\left(3^{k}\right)}{U\left(3^{k}\right)\left(V\left(3^{k}\right)^{2}-1\right)} \tag{4}
\end{align*}
$$

Now, using the fact that

$$
U(3 n)=U(n)\left(V(n)^{2}-1\right)
$$

and

$$
U(3 n-1)=U(n-1)\left(V(n)^{2}-1\right)+V(n)
$$

we see that the right side of (4) equals

$$
\frac{U\left(3^{k+1}-1\right)}{U\left(3^{k+1}\right)}
$$

which completes the induction step.

Equation (3) gives us an alternative proof of our Theorem above. By letting $k \rightarrow \infty$, we see that

$$
\left\{c_{0}-1, c_{0}+1, c_{1}-1, c_{1}+1, \ldots\right\}=\lim _{k \rightarrow \infty} \frac{U\left(3^{k}-1\right)}{U\left(3^{k}\right)}=\frac{1}{\beta}=\alpha
$$

REFERENCES

1. A. V. Aho \& N. J. A. Sloane. "Some Doubly Exponential Sequences." The Fibonacci Quarterly 15, no. 5 (1973):429-37.
2. E. B. Escott. "Rapid Method for Extracting a Square Root." Amer. Math. Monthly 44 (1937):644-46.
3. T. A. Pierce. "On an Algorithm and Its Use in Approximating Roots of Polynomials." Amer. Math. Monthly 36 (1929):523-25.
4. H. E. Salzer. "The Approximation of Numbers as Sums of Reciprocals." Amer. Math. Monthly 54 (1947):135-42.
5. J. O. Shallit. "Metric Theory of Pierce Expansions." To appear.
