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I. INTRODUCTION 

In 1929, T. A. Pierce discussed an algorithm for expanding real numbers 
x €E (0, 1) in the form 

1 1 ^ 1 /1N 

x= + _ ee # j (i) 
CL-L a-^a2 cL1a2a^ 

where the a^ form a strictly increasing sequence of positive integers. 
He showed that these expansions (which we call Pievoe expansions) are es-

sentially unique. The Pierce expansion for x terminates if and only if x is 
rational. See [3] and [5] for details. 

In this note, we give formulas for the a^ in the case where 

x = ~— 

and c > 3 is an integer. For these numbers, Pierce expansions provide extreme-
ly rapidly converging series. 

II. FINDING REAL ROOTS OF POLYNOMIALS 

To save space, we sill sometimes write equation (1) in the form 

x = {als a2, a3, . . . } , 

where the braces denote a Pierce expansion. 
Let 

Pl(x) = bnxn + bn_1xn~1 + ••• + b±x + bQ 

be a polynomial with integer coefficients and a single real zero a in the in-
terval (0, 1). We want to find the first term in the Pierce expansion of a. 
From equation (1) It is easy to see that a± = [l/otj. Consider the polynomial 
ox{x) = ^np1(l/x); this is a polynomial with Integer coefficients that has 1/a 
as a zero. Through a simple binary search procedure, it is easy to find d1 
such that 

sign(q1(d1)) = slgn(q1(d1 +1)); 

this shows that d± = [L/aJ a n d s o w e c a n t a k e ai = di-
Now consider the polynomial 

p2(x) = alVJi-^y 
This again is a polynomial with integer coefficients. It is easily verified 
that if 3 is a zero of p2(x)9 then 

1 1 
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a2 a2a3 

By repeating this procedure on the polynomial p2(x) 9 we generate the coef-
ficient a2 in the Pierce expansion of a, and by continuing in the same fashion, 
we can generate as many terms of the Pierce expansion for a as desired: 

- l ' + • • • . 

Now let us specify our polynomial to be 

p (x) = x2 - ex + 1, 

where o ^ 3 is an integer. Let a be the smaller positive zero, so 

e - Ve2 - 4 /0. 
a = — ^ • (2) 

Now q-i(x) = x2p1(l/x) = x2 - ex + 1. We find q1(c - 1) = 2 - e, which is 
negative, and q-^ie) = 1, which is positive. Hence, we see that a1 = e - 1. 

Now 

p2(x) = (C- l)2
Pl(l^f); 

hence, 
p2(x) ~ x2 + (e2 - e - 2)x + 2 - e, 

We find 
q2(x) = x2p2(l/x) = (2 - c)x2 + (e2 - e - 2)x + 1. 

Now qz(e + 1) = 1, which is positive; but q2(e + 2) = 5 - c2, which is nega-
tive. Hence, we see that a2 - e + 1. 

Now 

P 
so we see 

,<«) = * 2 P 2 ( ^ T ) ' 

p3(x) = x2 - (e3 - 3e)x + 1. 

So far we have been following the algorithm. But now we notice that p3 (x) 
is essentially just p±(x) with e3 - 3e playing the role of c. We have found 

_ 1 _ 1 1 
a e - 1 (c - l)(e •+ 1) (<? - l)(e + 1) Y' 

where y is the root of x2 - (e3 - 3e)x + 1 = 0. By continuing this process, we 
get: 

Theorem 

Let a be as in equation (2). Then, 

a = {e0 - 1, e0 + 1, o1 - 1, e1 + 1, e2 - 1, e2 + 1, . . . } , 

where c0 = e, ^ + 1 = e\ - 3ek. 

For example, let e = 3. Then we find 

3 - A {2, 4, 17, 19, 5777, 5779, ...}. 
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Another example: let o = 6. Then, after some manipulation, we find 

i/2 - 1 = {2, 5, 7, 197, 199, 7761797, 7761799, ...}. 

Ironically, both Pierce [3] and Salzer [4] gave the first four terms of this 
expansion, but apparently neither detected the general pattern! 

III. THE COEFFICIENTS ok 

The recurrence ok + 1 = c\ - 3ok is an interesting one which has been pre-
viously studied ([1], [2])* Some brief comments are in order. 

If we let a and 3 be the roots of the quadratic 

x2 - ex + 1 = 0, 
with a < 3, and define 

V(n) = an + 3n; U(n) = a* ~_ [**, 

then it is easy to show by induction that 

V(n) = oV(n - 1) - V(n - 2); U(n) = oU(n - 1) - U(n - 2), 
where 

7(0) = 2, 7(1) = o; U(0) = 0, U(l) = 1. 

We can also show that V(3k) = V(k) 3 - 3V(k) ; hence, by induction, cfe = 7(3fe) . 
This gives the following closed form for the ok1 

°u 
to + Vo2 - 4 \ 3 " + (a - v ^ - 4\3fe 

S i m i l a r l y , i t can be shown by i n d u c t i o n t h a t 

^ ^ = ^ 0 - 1. c 0 + 1, C l - 1, c1 + 1 , . . . , e ^ - 1 , Cfc_1 + 1 } . (3) 

Here i s a s k e t c h of t h e i n d u c t i o n s t e p . Assuming (3) h o l d s s we f i n d 
{oQ - 1 , CQ + 1 , G1 - 1 , ^ + 1 , . . . , £fc - 1 , <2fe + 1} 

U(3k JL1 + - J L J _ i I ) 
) tf(3fc)V** - l (ck - D ( ^ + 1 ) / tf(3* 

t / ( 3 k - 1) ^ 1 
+ £/(3k) U(3k) o2 - 1 

= U(3k - l ) ( 7 ( 3 k ) 2 - 1) + V(3k) 
U(3k)(V(3k)2 - 1) 

Now, u s i n g t h e f a c t t h a t 

(4) 

and 
U(3n) = U(n)(V(n)2 - 1) 

U(3n - 1) = U(n - l)(7(n)2 - 1) + V(n), 

we see that the right side of (4) equals 

UQk + 1 - 1) 
U(3k+1) 

which completes the induction step. 
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Equation (3) gives us an alternative proof of our Theorem above. By let-
ting k -* °°, we see that 

{c - 1, cn + 1, c - 1, c + 1, . . .} = lim —^ =—i = - = a. 
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