ON LINEAR RECURRENCES AND DIVISIBILITY BY PRIMES

J. O. SHALLIT and J. P. YAMRON
University of California, Berkeley, CA 94720
(Submitted March 1983)
\section*{1. INTRODUCTION}

Recently Neumann \& Wilson [6] and Shannon \& Horadam [8] have discussed the sequence of numbers given by the linear recurrence

$$
T_{k}=T_{k-2}+T_{k-3} ; T_{0}=3, T_{1}=0, T_{2}=2
$$

This sequence has the following interesting property:

$$
\begin{equation*}
\text { If } p \text { is a prime, then } p \mid T_{p} \tag{1}
\end{equation*}
$$

The sequence $\left\{T_{k}\right\}$ has been discussed several times before; for example, see [1], [2], [3], [4], [5], and [7]. In particular, Perrin [7] asks if the converse to (1) is true, that is:

Does $p \mid T_{p}$ imply that p is prime?
Neumann \& Wilson call a counterexample to the converse a pseudoprime. They did not find any pseudoprimes for the sequence $\left\{T_{k}\right\}$.

Unfortunately, the converse is false; the first example being

$$
271441=521^{2}
$$

The only other composite n less than 1000000 for which $n \mid T_{n}$ is

$$
904631=7 \cdot 13 \cdot 9941
$$

These numbers were found using a computer program written in APL and were checked independently by John Hughes using a FORTRAN program.

It can be shown that the sequence $\left\{T_{k}\right\}$ is, essentially, exponential in growth. In particular, for large k we have

$$
T_{k} \sim \alpha^{k}
$$

where α is the real root of $x^{3}-x-1=0$ and $\alpha=1.32$, approximately.
In [8], Shannon \& Horadam remark that the sequence $\left\{T_{k}\right\}$ "is possibly the slowest growing integer sequence for which $p \mid T_{p}$ for all primes p." This is clearly false, as simple examples like

$$
A_{k}=k \cdot|\log k|
$$

or even

$$
A_{k}=k
$$

will show. These examples might be dismissed as trivial. In this note we will show that there exist nontrivial sequences $\left\{T_{k}\right\}$ given by a linear recurrence having the property (1) that have rates of growth like

$$
T_{k} \sim \alpha^{k}
$$

where $\alpha-1$ is a positive number arbitrarily close to 0 .

11. SLOWLY-GROWING SEQUENCES

Let $n \geqslant 3$ be a positive integer and define

$$
f(x)=x^{n}-x-1
$$

Let the roots of $f(x)=0$ be
and put

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}
$$

$$
T_{k}=\alpha_{1}^{k}+\alpha_{2}^{k}+\cdots+\alpha_{n}^{k}
$$

Then it is easy to see that

$$
T_{k}=T_{k+1-n}+T_{k-n},
$$

where the starting values are given by

$$
T_{0}=n, T_{1}=0, T_{2}=0, \ldots, T_{n-2}=0, T_{n-1}=n-1
$$

By Theorem 2 of [6], the sequence $\left\{T_{k}\right\}$ has the property of (1).
We have the following:
Theorem
Let $f(x)=x^{n}-x-1$. Then:
(1) All zeros of f are smaller in magnitude than $3^{1 / n}$.
(2) All zeros of f are of multiplicity 1.
(3) f has exactly 1 real zero if n is odd and exactly 2 real zeros if n is even.
(4) f has a real zero α satisfying $2^{1 / n}<\alpha<3^{1 / n}$. If n is even, there is in addition a real zero β satisfying $-1<\beta<0$.
(5) The positive real zero α is in fact the zero of f largest in magnitude.

Proof:
(1) Let α be the zero of f which is largest in magnitude. Then, for some integer $k \geqslant 0$, we have

$$
k^{1 / n} \leqslant|\alpha|<(k+1)^{1 / n}
$$

Now $\alpha^{n}=\alpha+1$, so

$$
\left|\alpha^{n}\right|=|\alpha+1| \leqslant|\alpha|+1<(k+1)^{1 / n}+1
$$

whereas $k \leqslant\left|\alpha^{n}\right|$. Hence

$$
k<(k+1)^{1 / n}+1
$$

and so certainly $k<3$.
(2) Put $g(x)=n f(x)-x f^{\prime}(x)$. Now, if there were a repeated zero of f, it would be a zero of f^{\prime} and hence also a zero of g. But g is linear; in fact,

$$
g(x)=(1-n) x-n
$$

It is easily verified that the zero of g, namely $n /(1-n)$, is not a zero of f^{\prime}. This gives us the desired contradiction.
(3) Suppose n is even. Then $f^{\prime}(n)=0$ has only one real root, namely

$$
n^{-1 /(n-1)}
$$

ON LINEAR RECURRENCES AND DIVISIBILITY BY PRIMES

It is easily verified that $f(x) \rightarrow+\infty$ as $x \rightarrow \pm \infty$. Hence, f attains its minimum at $x=n^{-1 /(n-1)}$. It is easily verified that this minimum is negative. Hence, f has two real zeros.

Now suppose n is odd. Then $f^{\prime}(x)=0$ has two real roots, namely

$$
\pm n^{-1 /(n-1)} .
$$

Now $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow \infty$ as $x \rightarrow \infty$, so f attains a local maximum at $-n^{-1 /(n-1)}$ and attains a local minimum at $n^{-1 /(n-1)}$. It is easily verified that f is negative at both these points, so f has only one real zero.
(4) It is easily verified that $f\left(2^{1 / n}\right)<0$, while $f\left(3^{1 / n}\right)>0$. A1so, if n is even, then $f(-1)=1$ but $f(0)=-1$.
(5) Let $y_{0}=r_{0} e^{i \theta}$ be a complex zero of f. Then

$$
f\left(y_{0}\right)=\left(r_{0} e^{i \theta}\right)^{n}-r_{0} e^{i \theta}-1=0 .
$$

Hence, $r_{0}=\left|r_{0} e^{i \theta}+1\right|<r_{0}+1$. Thus, $f\left(r_{0}\right)=r_{0}^{n}-r_{0}-1<0$. However, r_{0} is positive; and from parts (3) and (4) above, we see that if r_{0} is positive and $f\left(r_{0}\right)<0$, then $r_{0}<\alpha$. Hence, $\left|y_{0}\right|<\alpha$.

This completes the proof of our Theorem. \square
This theorem implies that if

$$
T_{k}=\alpha_{1}^{k}+\alpha_{2}^{k}+\cdots+\alpha_{n}^{k}
$$

and if $\alpha_{1}=\alpha$, the positive real zero of $x^{n}-x-1$, then the other zeros are smaller in magnitude, and hence for large k we have

$$
T_{k} \sim \alpha^{k}
$$

From part (4) of the theorem, we know that

$$
2^{1 / n}<\alpha<3^{1 / n}
$$

so by choosing n sufficiently large, we can make α as close to 1 as desired. For example, if we choose $n=4$, we get a sequence with property (1) that grows approximately like 1.22^{k}.

The authors thank the referee for detailed comments and a shorter proof of part (2) of the theorem.

REFERENCES

1. L. E. Dickson. Solution to Problem 151. Amer. Math. Monthly 15 (1908):209.
2. E. B. Escott. Response to Question 1484. L'Intermédiaire des Math. 8 (1901): 63-64.
3. E. B. Escott. Problem 151. Amer. Math. Monthly 15 (1908):22.
4. E. Lucas. "Theorie des fonctions numériques simplement périodiques." Amer_ ican J. Math. 1 (1878):184-240.
5. E. Malo. Response to Question 1481. L'Intermédiaire des Math. 7 (1901):28082, 312-24.
6. B. H. Neumann \& L. G. Wilson. "Some Sequences Like Fibonacci's." The Fibonacci Quarterly 17 (1979):80-83.
7. R. Perrin. Question 1484. L'Intermédiaire des Math. 6 (1899):76-77.
8. A. G. Shannon \& A. F. Horadam. "Concerning a Ppaer by L. G. Wilson." The Fibonacei Quarterly 20 (1982):38-41.
