ON LINEAR RECURRENCES AND DIVISIBILITY BY PRIMES

J. O. SHALLIT and J. P. YAMRON University of California, Berkeley, CA 94720 (Submitted March 1983)

I. INTRODUCTION

Recently Neumann & Wilson [6] and Shannon & Horadam [8] have discussed the sequence of numbers given by the linear recurrence

$$T_k = T_{k-2} + T_{k-3}; T_0 = 3, T_1 = 0, T_2 = 2.$$

This sequence has the following interesting property:

If p is a prime, then $p | T_p$.

The sequence $\{T_k\}$ has been discussed several times before; for example, see [1], [2], [3], [4], [5], and [7]. In particular, Perrin [7] asks if the converse to (1) is true, that is:

Does $p \mid T_p$ imply that p is prime?

Neumann & Wilson call a counterexample to the converse a *pseudoprime*. They did not find any pseudoprimes for the sequence $\{T_k\}$.

Unfortunately, the converse is false; the first example being

 $271441 = 521^2$.

The only other composite n less than 1000000 for which $n \mid T_n$ is

$904631 = 7 \cdot 13 \cdot 9941.$

These numbers were found using a computer program written in APL and were checked independently by John Hughes using a FORTRAN program.

It can be shown that the sequence $\{T_k\}$ is, essentially, exponential in growth. In particular, for large k we have

$$T_k \sim \alpha^k$$
,

where α is the real root of $x^3 - x - 1 = 0$ and $\alpha = 1.32$, approximately.

In [8], Shannon & Horadam remark that the sequence $\{T_k\}$ "is possibly the slowest growing integer sequence for which $p | T_p$ for all primes p." This is clearly false, as simple examples like

$$A_{k} = k \cdot \log k$$

or even

$A_k = k$

will show. These examples might be dismissed as trivial. In this note we will show that there exist nontrivial sequences $\{T_k\}$ given by a linear recurrence having the property (1) that have rates of growth like

$T_k \sim \alpha^k,$

where $\alpha - 1$ is a positive number arbitrarily close to 0.

[Nov.

(1)

366

ON LINEAR RECURRENCES AND DIVISIBILITY BY PRIMES

II. SLOWLY-GROWING SEQUENCES

Let $n \ge 3$ be a positive integer and define

$$f(x) = x^n - x - 1.$$

Let the roots of f(x) = 0 be

and put

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$

1.

$$T_k = \alpha_1^{\kappa} + \alpha_2^{\kappa} + \cdots + \alpha_n^{\kappa}.$$

Then it is easy to see that

$$T_k = T_{k+1-n} + T_{k-n},$$

where the starting values are given by

$$T_0 = n, T_1 = 0, T_2 = 0, \dots, T_{n-2} = 0, T_{n-1} = n - 1.$$

By Theorem 2 of [6], the sequence $\{T_k\}$ has the property of (1).

We have the following:

Theorem

- Let $f(x) = x^{n} x 1$. Then:
- (1) All zeros of f are smaller in magnitude than $3^{1/n}$.
- (2) All zeros of f are of multiplicity 1.
- (3) f has exactly 1 real zero if n is odd and exactly 2 real zeros if n is even.
- (4) f has a real zero α satisfying $2^{1/n} < \alpha < 3^{1/n}$. If n is even, there is in addition a real zero β satisfying $-1 < \beta < 0$.
- (5) The positive real zero α is in fact the zero of f largest in magnitude.

Proof:

(1) Let α be the zero of f which is largest in magnitude. Then, for some integer $k \ge 0$, we have $k^{1/n} \le |\alpha| \le (k+1)^{1/n}.$

Now $\alpha^n = \alpha + 1$, so

$$|\alpha^{n}| = |\alpha + 1| \leq |\alpha| + 1 < (k + 1)^{1/n} + 1,$$

whereas $k \leq |\alpha^n|$. Hence

$$k < (k + 1)^{1/n} + 1$$

and so certainly k < 3.

(2) Put g(x) = nf(x) - xf'(x). Now, if there were a repeated zero of f, it would be a zero of f' and hence also a zero of g. But g is linear; in fact,

$$g(x) = (1 - n)x - n$$

It is easily verified that the zero of g, namely n/(1-n), is not a zero of f'. This gives us the desired contradiction.

(3) Suppose *n* is even. Then f'(n) = 0 has only one real root, namely $n^{-1/(n-1)}$.

1984]

367

ON LINEAR RECURRENCES AND DIVISIBILITY BY PRIMES

It is easily verified that $f(x) \to +\infty$ as $x \to \pm\infty$. Hence, f attains its minimum at $x = n^{-1/(n-1)}$. It is easily verified that this minimum is negative. Hence, f has two real zeros.

Now suppose n is odd. Then f'(x) = 0 has two real roots, namely

 $\pm n^{-1/(n-1)}$.

Now $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$, so f attains a local maximum at $-n^{-1/(n-1)}$ and attains a local minimum at $n^{-1/(n-1)}$. It is easily verified that f is negative at both these points, so f has only one real zero.

(4) It is easily verified that $f(2^{1/n}) \leq 0$, while $f(3^{1/n}) \geq 0$. Also, if n is even, then f(-1) = 1 but f(0) = -1.

(5) Let $y_0 = r_0 e^{i\theta}$ be a complex zero of f. Then

$$f(y_0) = (r_0 e^{i\theta})^n - r_0 e^{i\theta} - 1 = 0.$$

Hence, $r_0 = |r_0 e^{i\theta} + 1| < r_0 + 1$. Thus, $f(r_0) = r_0^n - r_0 - 1 < 0$. However, r_0 is positive; and from parts (3) and (4) above, we see that if r_0 is positive and $f(r_0) < 0$, then $r_0 < \alpha$. Hence, $|y_0| < \alpha$.

This completes the proof of our Theorem. \square

This theorem implies that if

$$T_{\nu} = \alpha_1^{\kappa} + \alpha_2^{\kappa} + \cdots + \alpha_n^{\kappa},$$

and if $\alpha_1 = \alpha$, the positive real zero of $x^n - x - 1$, then the other zeros are smaller in magnitude, and hence for large k we have

 $T_{\nu} \sim \alpha^k$.

From part (4) of the theorem, we know that

$$2^{1/n} < \alpha < 3^{1/n}$$
.

so by choosing *n* sufficiently large, we can make α as close to 1 as desired. For example, if we choose n = 4, we get a sequence with property (1) that grows approximately like 1.22^k .

The authors thank the referee for detailed comments and a shorter proof of part (2) of the theorem.

REFERENCES

- 1. L.E. Dickson. Solution to Problem 151. Amer. Math. Monthly 15 (1908):209.
- 2. E.B.Escott. Response to Question 1484. L'Intermédiaire des Math. 8 (1901): 63-64.
- 3. E.B. Escott. Problem 151. Amer. Math. Monthly 15 (1908):22.
- 4. E. Lucas. "Theorie des fonctions numériques simplement périodiques." American J. Math. 1 (1878):184-240.
- 5. E. Malo. Response to Question 1481. L'Intermédiaire des Math. 7 (1901):280-82, 312-24.
- B. H. Neumann & L. G. Wilson. "Some Sequences Like Fibonacci's." The Fibonacci Quarterly 17 (1979):80-83.
- 7. R. Perrin. Question 1484. L'Intermédiaire des Math. 6 (1899):76-77.
- 8. A. G. Shannon & A. F. Horadam. "Concerning a Ppaer by L. G. Wilson." The Fibonacci Quarterly 20 (1982):38-41.

368

[Nov.