A FIBONACCI-LIKE SEQUENCE OF ABUNDANT NUMBERS

CHARLES R. WALL Trident Technical College, Charleston, SC 29411
(Submitted April 1983)

Let $\sigma(n)$ denote the sum of the divisors of n. An integer n is said to be abundant if $\sigma(n)>2 n$, perfect if $\sigma(n)=2 n$, or deficient if $\sigma(n)<2 n$. It is known [2] that if the greatest common divisor of the integers a and b is deficient, then there exist infinitely many deficient integers $n \equiv a(\bmod b)$. Fibonacci buffs might expect an analogous result for generalized Fibonacci numbers, something along the lines of "if $x_{n+1}=x_{n}+x_{n-1}$ and $\operatorname{gcd}\left(x_{1}, x_{2}\right)$ is deficient, then the sequence $\left\{x_{n}\right\}$ contains infinitely many deficient terms." In this note we shatter any such expectations by constructing a Fibonacci-like sequence $\left\{x_{n}\right\}$ with all terms abundant and having gcd (x_{1}, x_{2}) deficient.

Vital to the construction are two easily proved theorems:
(1) Any multiple of an abundant number is abundant.
(2) If p is an odd prime, then $2^{a} p$ is abundant if $p<2^{a+1}-1$,
perfect if $p=2^{a+1}-1$,
and deficient if $p>2^{a+1}-1$.
Graham [1] defined a Fibonacci-like sequence by

| $g_{1}=1786$ | 772701 | 928802 | 632268 | 715130 | 455793, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $g_{2}=1059$ | 683225 | 053915 | 111058 | 165141 | 686995, |

and $g_{n+1}=g_{n}+g_{n-1}$. Graham's sequence has the remarkable property that even though gcd $\left(g_{1}, g_{2}\right)=1$, every term is composite. More specifically, every term is divisible by at least one of the primes
(3) $2,3,5,7,11,17,19,31,41,47,53,61,109,1087,2207,2521,4481,5779$.

Now, define a sequence $\left\{x_{n}\right\}$ by

$$
x_{n}=2^{12} 8209 \cdot g_{n},
$$

where $\left\{g_{n}\right\}$ is Graham's sequence. Since $5779<2^{13}=8192,2^{12} q$ is abundant for each odd q listed in (3), and $2^{13} 8209$ is abundant since $8209<2^{14}-1$. Therefor, each x_{n} is abundant. But

$$
\operatorname{gcd}\left(x_{1}, x_{2}\right)=2^{12} 8209
$$

is deficient since $8209>2^{13}-1$.
Clearly, in the construction above, we may replace 8209 by any prime p such that $2^{13}<p<2^{14}$.

REFERENCES

1. R.L. Graham. "A Fibonacci-Like Sequence of Composite Numbers." Math. Mag. 37 (1964):322-34.
2. C. R. Wall. Problem proposal E3002. Amer. Math. Monthly 90 (1983):400.

$\Delta \Delta \diamond \diamond$

