generalized pell polynomials and other polynomials

J. E. WALTON
Northern Rivers College of Advanced Education, Lismore 2480, Australia
and
A. F. HORADAM
University of New England, Armidale 2351, Australia
(Submitted March 1983)
\section*{1. INTRODUCTION}

Following some of the techniques in [1] and [2], Walton [8] and [9] discussed several properties of the polynomial sequence $\left\{A_{n}(x)\right\}$ defined by the second-order recurrence relation

$$
\begin{equation*}
A_{n+2}(x)=2 x A_{n+1}(x)+A_{n}(x), A_{0}(x)=q, A_{1}(x)=p \tag{1.1}
\end{equation*}
$$

The first few terms of $\left\{A_{n}(x)\right\}$ are:

$$
\left\{\begin{array}{l}
A_{0}(x)=q, A_{1}(x)=p, A_{2}(x)=2 p x+q, A_{3}(x)=4 p x^{2}+2 q x+p \\
A_{4}(x)=8 p x^{3}+4 q x^{2}+4 p x+q, A_{5}(x)=16 p x^{4}+8 q x^{3}+12 p x^{2}+4 q x+p
\end{array}\right.
$$

Using standard techniques, we easily obtain the Binet form

$$
\begin{equation*}
A_{n}(x)=\frac{(p-q \beta) \alpha^{n}-(p-q \alpha) \beta^{n}}{\alpha-\beta} \tag{1.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\alpha=x+\sqrt{x^{2}+1} \tag{1.4}\\
\beta=x-\sqrt{x^{2}+1}
\end{array}\right.
$$

are the roots of

$$
\begin{equation*}
t^{2}-2 x t-1=0 \tag{1.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha+\beta=2 x, \alpha-\beta=2 \sqrt{x^{2}+1}, \alpha \beta=-1 \tag{1.6}
\end{equation*}
$$

In this paper we relate part of the work in [8] and [9] to other well-known polynomials. Thus, only some basic features of $\left\{A_{n}(x)\right\}$ will be examined.

It should be noted in passing that the expression for $\left\{A_{n}(x)\right\}$ in (1.3) is in agreement with the form for the $n^{\text {th }}$ term of more general sequences of polynomials considered in [6]. Properties of the general sequence of numbers $\left\{W_{n}\right\}$ given in [4] are also readily generalized to yield properties of $\left\{A_{n}(x)\right\}$.

Note that when $x=1 / 2$ in (1.1) we obtain the generalized Fibonacci number sequence $\left\{H_{n}\right\}$ whose basic properties are described in [3]. Furthermore, if we also let $p=1, q=0$ in (1.1), then we derive the sequence $\left\{F_{n}\right\}$ of Fibonacci numbers. Letting $p=1, q=2$ in (1.1) with $x=1 / 2$, we obtain the sequence $\left\{L_{n}\right\}$ of Lucas numbers.

For unspecified x, the Pell polynomials $P_{n}(x)$ occur when $p=1$ and $q=0$ in (1.1), while for $p=2 x$ and $q=2$ the Pe11-Lucas polynomials $Q_{n}(x)$ arise. Relationships among $P_{n}(x)$ and $Q_{n}(x)$ are developed in [5]. Hence, polynomials of the sequence $\left\{A_{n}(x)\right\}$ may be called generalized Pell polynomials.

generalized Pell polynomials and other polynomials

Readers may find some interest in specializing the results for $\left\{A_{n}(x)\right\}$ to the polynomial sequences $\left\{P_{n}(x)\right\}$ and $\left\{Q_{n}(x)\right\}$, and to the number sequences $\left\{H_{n}\right\}$, $\left\{F_{n}\right\}$, and $\left\{L_{n}\right\}$. Some of the specialized formulas for $\left\{H_{n}\right\}$ are, in fact, supplied in [8] and [9].

Though it is not strictly pertinent to this article, we wish to record an important formula for $\left\{A_{n}(x)\right\}$ which was not included in [9], namely, Simson's formula:

$$
\begin{equation*}
A_{n}^{2}(x)-A_{n+1}(x) A_{n-1}(x)=(-1)^{n}\left(q^{2}-p^{2}+2 p x\right) . \tag{1.7}
\end{equation*}
$$

2. $A_{n}(x)$ AND CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

In [8] and [9] it is shown that

$$
\begin{equation*}
A_{n}(x)=q \sum_{m=0}^{[n / 2]}\binom{n-m}{m}(2 x)^{n-2 m}+(p-2 q x) \sum_{m=0}^{\left[\frac{n-1}{2}\right]}\binom{n-1-m}{m}(2 x)^{n-1-2 m} \tag{2.1}
\end{equation*}
$$

with $n \geqslant 1$. Furthermore, from [5] and [7], we have, respectively, the Pell polynomials given by

$$
\begin{equation*}
P_{n}(x)=\sum_{m=0}^{\left[\frac{n-1}{2}\right]}\binom{n-m-1}{m}(2 x)^{n-2 m-1} \tag{2.2}
\end{equation*}
$$

and the Chebyshev polynomials of the second kind given by

$$
\begin{equation*}
U_{n}(x)=\sum_{m=0}^{[n / 2]}(-1)^{m}\binom{n-m}{m}(2 x)^{n-2 m} . \tag{2.3}
\end{equation*}
$$

Letting x be replaced by $i x$ in (2.3), we see that

$$
\begin{equation*}
\sum_{m=0}^{[n / 2]}\binom{n-m}{m}(2 x)^{n-2 m}=(-i)^{n} U_{n}(i x)=P_{n+1}(x), \tag{2.4}
\end{equation*}
$$

so that (2.1) can be rewritten as

$$
\begin{align*}
A_{n}(x) & =q(-i)^{n} U_{n}(i x)+(p-2 q x)(-i)^{n-1} U_{n-1}(i x) \tag{2.5}\\
& =q P_{n+1}(x)+(p-2 q x) P_{n}(x) \\
& =p P_{n}(x)+q P_{n-1}(x),
\end{align*}
$$

which is another form of (1.1), which could also have been obtained by using the generating functions for $A_{n}(x)$ (given in [9]) and $P_{n}(x)$ (given in [5]) or their respective Binet forms.

3. HYPERBOLIC FUNCTIONS AND $A_{n}(x)$

Elementary methods enable us to derive, when $x=\sinh \omega=\left(e^{w}-e^{-w}\right) / 2$,

$$
\begin{equation*}
A_{2 k}(x)=\{p \sinh 2 k w+q \cosh (2 k-1) w\} / \cosh w \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2 k+1}(x)=\{p \cosh (2 k+1) w+q \sinh 2 k w\} / \cosh w . \tag{3.2}
\end{equation*}
$$

To achieve these results, we use the Binet form (1.3) and

$$
\alpha=e^{w}, \beta=-e^{-w}, \alpha-\beta=2 \cosh w=e^{w}+e^{-w} .
$$

If we now use formulas (6.1) and (6.2) of [5], then (3.1) and (3.2) become (2.5) for the cases $n=2 k$ and $n=2 k+1$, respectively.
4. GEGENBAUER POLYNOMIALS AND $A_{n}(x)$

The Gegenbauer polynomials C_{n}^{k} for $k>-\frac{1}{2}, k \neq 0$, are given in [7] by

$$
\begin{equation*}
C_{n}^{k}(x)=\frac{1}{\Gamma(k)} \sum_{m=0}^{[n / 2]}(-1)^{m} \frac{\Gamma(n-m+k)}{\Gamma(n-m+1)}\binom{n-m}{m}(2 x)^{n-2 m}, \tag{4.1}
\end{equation*}
$$

where $\Gamma(x)$ is the Gamma function. With $k=1$, we have

$$
\begin{equation*}
C_{n}^{1}(x)=\sum_{m=0}^{[n / 2]}(-1)^{m}\binom{n-m}{m}(2 x)^{n-2 m}=U_{n}(x), \tag{4.2}
\end{equation*}
$$

so that by (2.5) we obtain

$$
\begin{equation*}
A_{n}(x)=q(-i)^{n} C_{n}^{1}(i x)+(p-2 q x)(-i)^{n-1} C_{n-1}^{1}(i x) \tag{4.3}
\end{equation*}
$$

5. DETERMINANTAL GENERATION OF $A_{n}(x)$

Let us define two functional determinants $\Delta_{n-1}(x)$ and $\delta_{n-1}(x)$ of order $n-1$ as follows, where $d_{i j}$ denotes the element in the $i^{\text {th }}$ row and j th column:

$$
\Delta_{n-1}(x): \begin{cases}d_{i i}=2 p x+q & i=1,2, \ldots, n-1 \tag{5.1}\\ d_{i, i+1}=p & i=1,2, \ldots, n-2 \\ d_{i, i-1}=-1 & i=2,3, \ldots, n-1 \\ d_{i j}=0 & \text { otherwise }\end{cases}
$$

$\delta_{n-1}(x):$ as for $\Delta_{n-1}(x)$ except that $d_{i, i+1}=-p, d_{i, i-1}=1$.
Expansion along the first row then yields:

$$
\begin{aligned}
\Delta_{n-1}(x) & =(2 p x+q) \Delta_{n-2}(x)+p \Delta_{n-3}(x) & & \\
& =p\left\{2 x P_{n-1}(x)+P_{n-2}(x)\right\}+q P_{n-1}(x) & & \text { by (5.5) of }[5] \\
& =p P_{n}(x)+q P_{n-1}(x) & & \text { by (1.1) of [5] } \\
& =A_{n}(x) & & \text { by (2.5). }
\end{aligned}
$$

Similarly,

$$
\begin{equation*}
\delta_{n-1}(x)=A_{n}(x) \tag{5.4}
\end{equation*}
$$

As mentioned at the end of $\S 2$, a generating function for $A_{n}(x)$ is given in [9].

REFERENCES

1. P. F. Byrd. 'Expansion of Analytic Functions in Polynomials Associated with Fibonacci Numbers." The Fibonacci Quarterly 1, no. 1 (1963):16-24.
2. P. F. Byrd. "Expansion of Analytic Functions in Terms Involving Lucas Numbers or Similar Number Sequences." The Fibonacci Quarterly 3, no. 2 (1965): 101-14.
3. A. F. Horadam. "A Generalised Fibonacci Sequence." Amer. Math. Monthly 68, no. 5 (1961):455-59.
4. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Integers." The Fibonacci Quarterly 3, no. 3 (1965):161-76.
5. A. F. Horadam \& J. M. Mahon. "Pell and Pell-Lucas Numbers." To appear.
6. D. Lovelock. "On the Recurrence Relation $\Delta_{n}(z)-f(z) \Delta_{n-1}(z)-g(z) \Delta_{n-2}(z)=$ 0 and Its Generalizations." Joint Mathematical Colloquirm 1967 The University of South Africa and The University of Witwatersrand, June/July, 1968, pp. 139-53.
7. W. Magnus, F. Oberhettinger, \& R. P. Soni. Formulas and Theorems for Special Functions of Mathematical Physics. Berlin: Springer-Verlag, 1966.
8. J. E. Walton. M.Sc. Thesis. University of New England, 1968.
9. J. E. Walton. "Generalised Fibonacci Polynomials." The Australian Mathematics Teacher 32, no. 6 (1976):204-07.
