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1. INTRODUCTION 

The object of this paper is to generalize the results of Finkelstein [3], [4], 
and Robbins [8] about the Fibonacci and Lucas numbers of the form z2 ± 1, by 
using the method of Colin [2], Some results which contain the Fibonacci and 
Lucas numbers of the form 2s2 i 1 as special cases are also given. 

In all cases we obtain information about the solution of an infinite class 
of biquadratic diophantine equations, with the exception of Theorems 8 and 10, 
where it is not known if the class considered is finite or infinite [5]. 

The following notation will be used: 

• Fm, Lm for the (usual) Fibonacci, Lucas numbers. 

• a E b (mod c) or a =. b(c) for congruences. 

• {alb) for the Jacobi quadratic symbol. 

• The solutions (±x5 ±y) of a diophantine equation are counted once if 
x and y possess only even exponents. 

2, PRELIMINARIES 

Def i n i t ion 1 : Let ^ E N , d ^ 05 and d not be a square. 

(i) d will be called of the first kind if the Pellian equation x - dy = 
-4 has a solution with both x and y odd integers. 

(ii) d will be called of the second kind if d is not of the first kind and 
the Pellian equation x2 - dy2 = 4 has a solution with both x and y 
odd integers. 

Remark: A necessary but not sufficient condition for d to be of the first or 
second kind is J = 5(8). A counterexample is d = 37. 

Definition 2: Let d E N be of the first or the second kind with d = 5 + 8v. 
Let a = h{a + b/d) be the fundamental solution (see [7]) of x2 - dy2 = -4 or 
x2 ~ dy2 = 4 and 3 = h(a - by/d) . We define, for all integers n5 

Un = d~1/2(an - 3n) 

Vn = an + 3n. 

It is easy to see that UQ = 03 U1 = b, VQ = 2S V1 = a, and UnS Vn are integers 
for each n E Z. 
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The terms of the sequence {Un}9 n E N ({7n}, n E N) will be called gener-
alised Fibonacci (Lucas) numbers. 

Remarks: (i) From Definitions 1 and 2, it follows that both a and b must be 
odd. 

(ii) If b = 1, then our definition of generalized Fibonacci numbers 
agrees with the Fibonacci polynomials Un = Fn(a), a odd, but in 
general, b can be different from one as for example in the case 
d = 61, a = 39, b = 5. 

From now on, d will always be of the first kind with the fundamental solu-
tion ̂ (a + by/d) of the corresponding Pellian equation x2 - dy2 = -4. According 
to [2], the following identities hold: 

Un + 2 = *Un+l + Un, . ' (1) 

Vn + 2 = aVn+1 + V„, (2) 

U.n = (-l)n-1Un, (3) 

7_„ = {-DnVn, (4) 

2Um+n= UmVn + UnVm, (5) 

2Vm + n = dym£/n + VmVn, (6) 

( - l ) n 4 - 7* - <ft£, (7) 
Vn - V2n + ( - 1 ) " ' 2 ' <8 ) 

2 | y n i f f 2 | F n i f f 3\n, (9) 

( 1 i f 3 | n 

(.2 i f 3 | n , 

Vn+lz = Vn (mod 8 ) , (11) 

2Um + 2N = (-l)',-12Um (mod VN), (12) 

27m + 2iV E ( - l ) " " ^ (mod VN), (13) 

2^m + 2J? = (-l)s2Vn (mod £/„), (14) 
2 7 m + 2 * = (~DN2Vm (mod £/ff) , (15) 
Vn E 2(mod a) i f l\n, (16) 

Fn E ( -1 )* / 2 • 2 (mod fe) i f 2\n, (17) 

& E 1 ( 4 ) , (18) 

and, f u r t h e r m o r e , for k E l , w i th 2\ks 3j7c, 
(3 (8 ) i f fc E 2(4) 

Fk > 0 and Vk = < (19) 
(7 (8 ) i f 41/c, 

( -1 )* 7 2 , (20) 

£/m+2k = -Um (mod 7 k ) , (21) 

^ , + 2fc E - ^ (*°d V » (22) 

(i) 
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(it) = (f)> <23> 
(FJ) = (f)> (24) 
[ff-J = -(f) provided that 5\ks (25) 

the general solution of x2 - dy2 = -4 is x = ^2n + 1s 2/ = ^2n + i? ^26^ 

the general solution of x2 - dy2 = 4 is x = V2n, y = U2 , (27) 

(ft = 1 if a = £2 and d + 5 
if 7n = x2

s then <̂  ft = 1, 3 if d = 5 (28) 
(ft = 3 if d = 13, 

(n = 0 
if 7n = 2^2, then ̂  and (29) 

(ft = ±6 if d = 5, 29, 

(n = ° 
if tfn = x 2 , t h e n < n = J2 ^ J = ^2 , , 2 (30) 

n J ft = 2 if a = r and b = r K J 

( n = ±1 if 2? = r2, 
(n = 0 

if J7n = 2̂ r2, then \ n = 6 if d = 5 (31) 
(and possibly the solutions n = ±3. 

We also need some values for £/„ and Vn: 

n 

0 
1 
2 
3 
4 
5 
6 

Un 

0 
£ 
a& 
(a2 + 1)2? 
(a3 + 2a)b 
(ah + 3a2 + 
(a5 + 4a3 + 

Dfc 
3a) b 

Vn 

2 
a 
a2 + 2 
a3 + 3a 
a1* + 4a2 + 2 
a5 + 5a3 + 5a 
a6 + 6a4 •+ 9a2+2 

3. GENERALIZED FIBONACCI NUMBERS OF THE FORM )iz2 + V 

Theorem 1: Let a ~ 1, 3(8) and b = 1(8). Then the equation 

Um = as2 + b, m = 1(2), 
has 

(a) the solutions 772 = ±1, ±3, and ±5 if d = 5, 

(b) the solutions 777 = ±1, ±5 if d = 13, 

(c) the solutions m = ±1, ±3 if a and b are both perfect squares, d £ 5, 

(d) only the solutions m = il in all other cases. 

Proof: It is sufficient by (3) to consider only the cases m = 1(8), 3(16), 
and 5(16). 
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Case 1. Let m = 1(8). For m = 1, z = 0 is a solution. If m + 1, then we 
write m = 1+2 • 3s * n, where 4|n, 3Jn, and as2 + b = Um = -U1 (mod 7n) by (21). 
Thus (as)2 E -2a2? (mod 7„). But 

m - -> 
by (19), (20), (16), (17), and the assumption. Hence, Um + az2 + b. 

Case 2. Let 777 = 3(16). If m = 3, then as2 + b = (a2 + 1)2? iff 22 = a£ iff 
a and 2? are both perfect squares, since (a, b) = 1. 

If ?77 ̂  3, then we write ??? = 3 + 2 8 3 S e n , where 8|n, 3|n, and az2 + b = Um 
E -7J3 (mod 7„) E -(a2 + 1)2? (mod 7„), by (21). Thus (as)2 = -a2?72 (mod Vn) . 

By applying (13) repeatedly, we obtain 

2 ^ = - 2 V , E 2Fn-8 - ••• = 27Q E 4 (mod 72), (32) 

which by (19) implies Vn E 2 (mod 72). Thus (7„ , 72) = (2, 72) = 1 and 

±1. £)--©-(*) 
Now (-a2?72/7n) can be calculated to be -1 by using (19), (16), (17), (33), and 
the assumption. Hence, Um £ az2 + b. 

Case 3- Let m E 5(16) . If m = 5, then there exists a solution iff az2 + 2? = 
(ah + 3a2 + \)b iff z2 = a{a2 + 3)2?. Since b is odd and b\U3, 

(2?, 73)/(*73, 73) = 2, 

which implies (2?, 73) = 1. Hence, 

z2 = a(a2 + 3)2? = 732? iff b = r2 and a(a2 + 3) = z\. 

By [1], the last equation has only the solutions (zl9 a) = (0, 0), (±2, 1) , 
(±6, 3), (±42, 12). Since we have a E 1(2), the only possible solutions are 
(z19 a) = (±2, 1), (±6, 3). For a = 1, we have 2? = 1 = v2 and a7 = 5. For a = 3, 
we have b - 1 = r2 and d = 13. 

If 77? ̂  5, then 7?? = 5 + 2«3 s - n with 8|n, 3|n, and thus 

Um E -/J5 (mod 7n) E -(a* + 3a2 + 1)2? (mod 7„) by (21). 

Applying (15) r e p e a t e d l y and us ing ( 4 ) , we have 
2Fn E -27„_ 6 E 2 7 n _ 1 2 E . . . = ±2V2 (mod V z) . (34) 

Since ( 7 n , 72) = 1 i m p l i e s ( 2 7 n , U3) = 2, we see t h a t 

/ f V 2 \ _ / ( a 2 + l ) / 2 \ / f c \ _ / ^n \ /fc \ 
\ Vn I \ Vn )\Vn) \ ( a 2 + D/2)\Vn) 

- (urhnm • (0 
Now, i f az2 4- 2? = [/w, we h a v e 

(ox)2 E - a ^ + 3a2 + 2)2? = -a2?72Z73 (mod Vn), 

which is impossible because (-abV2U3/Vn) = -1 by (19), (16), (17), (33), (35), 
and the assumption. Hence, Um 4 as2 + 2?. 
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Corollary 1: The diophantine equation x2 = a2dzh + labdz2 + a2 with a = 1, 3(8) 
and b E 1(8), has 

(a) three solutions (xs y) = (±1, 0), (±4, ±1), (±11, ±2) if d = 5, 

(b) two solutions (xs z) = (±3, 0), (±393, 16) If d = 13, 

(c) two solutions (#, s) = (±a, 0), (±a(a2 + 3), ttr) , where a = t2 and Z? = r2 

are both perfect squares, d £ 5, 

(d) only one solution (x, z) = (+a, 0) in all other cases. 

Proof: This follows, directly from (26), Theorem 1, and Definition 2. 

Following the arguments of Theorem 1 and Corollary 1, we have 

Theorem 2: Let b E 1(8). Then the equation Um = z2 + bs m E 1(2), has 

(a) the solutions m - ±1, ±3S ±5, if d = 5, 

(b) the solutions m = ±1, ±3, if 2? = r2, d ^ 5 9 

(c) only the solutions w = ±1 in all other cases, 

and 

Corol 1 ary 2: The diophantine equation x2 = dzh + 2dbz2 + a2 with b E 1(8) has 

(a) three solutions (a:, s) = (±1, 0), (±4, ±1), (±11, ±2), if d = 5, 

(b) two solutions (x, z) = (±a, 0), (±a(a2 + 3), tar) If b = r2, d ^ 5S 

(c) only one solution (ic, s) = (±a, 0) in all other cases. 

We now show the following results, which are similar to the above but with 
m even. 

Theorem 3: Let a E l, 3(8) and b E 1(8) or a = 5, 7(8) and b = 5(8). Then the 
equation Um = z2 + ab, m E 0(2), has only the solution m = 2. 

Proof: 

Case 1 . Let m = 0(4). No solution exists for 777 = 0; but if m + 0, then we 
write m = 2 • 3s a n with 2|«, 3|w, and thus Um = 0 (mod 7„) by (21). If Um = 
s2 + aZ? for some m, then we have z2 = -ab (mod Vn) , which is impossible, since 
(-afe/7n) = -1 by (19), (16), (17), and the assumption. 

Case 2: Let m E 2(8). For m = 2, we have the solution 3 = 0 . If m + 2, 
then we write w = 2 + 2»3 s ® n with 4|n, 3fn, and thus 

tfOT E -U2 (mod 7n) E -a£ (mod Vn) by (21), 

Thus, if Um = z2 + ab, we should have z2 E -2a& (mod Vn) , which is impossible, 
since (-2a2?/7„) = -1 by (19), (20), (16), (17), and the assumption. 

Case 3« Let m = 6(8). If m = 6, we have a solution iff 

s2 + ab = (a5 + 4a3 + 3a)b iff s2 = a(ak + 4a2 + 2)2? = aVhb, 

But 2?|c/ ; hence, 

(b9 Vh)l(Uh, Vh) = 1 by (10). 
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Therefore, it follows that b = t2, a = v2, and ah + ka2 + 2 = 7^ = s2, which is 
impossible mod 4. 

If m ̂  6, then we write w = 6 + 2 * 3 S e n with 4|n, 3|n, and thus 

Um = -£/6 (mod 7n) = -(a5 + 4a3 + 3a)b (mod 7n) by (21). 

Hence, if Um = z2 + ab, we have z2 = -ab(ah + 4a2 + 4) E -ab(a2 + 2) 2 (mod 7n) , 
which is impossible since 

l-ab(a^ + 2) \ = /z^V= _x b y ( 1 9 ) 5 ( 1 6 ) j ( 1 7 ) 5 a n d t h e assumption. 

Applying Theorem 1(a) and Theorem 3, we now have 

Corollary 3: (Theorem of Finkelstein [3], [9], [1]) 

Fm = z2 + 1 iff m = ±1, 2, ±3, ±5. 

Using an argument similar to that of Theorem 3, we have Theorem 4 and two 
immediate corollaries. 

Theorem k: Let b E 1(8). Then, the equation Um = az2 + ab, m E 0(2), has only 
the solution m = 2. 

Corol}ary 4: Let <f = a2 + 4, 2Ja. Then, the equation Um = az2 + a has only 
the solution m = 2. 

Corol lary 5: The diophantine equation a:2 = a2dzk + 2a2dbz2 + (a2 + 2) 2 with 
£ E 1(8) has only the solution (x, y) = (±(a2 + 2), 0). 

An argument similar to Theorem 3 will also give us the following extended 
result of Theorem 1. 

Theorem 5» Let a E 1, 3(8) and b E 1(8). Then, each of the equations 

Um = 2az2 + b, Um = 2z2 + b, m = 1(2), 
has only the solutions m = ±1. 

Corellary 6: Let a E 1, 3(8) and b = 1(8). Then, the equations 

x2 = ka2dzh + 4aMs2 + a2 and ^2 = 4ds4 + kdbz2 + a2 

have only the solution {xs z) = (±a, 0). 

The following is an extended result of Theorem 3 and is similar to Theorem 
5 but with m even. 

Theorem 6: Let a = 1, 3(8) and b = 1(8), or a = 5, 7(8) and b = 5(8). Then, 
the equation Um = 2z2 + ab, m E 0(2) has 

(a) the solutions m = 2, 4 i f £ Z = 5 , 

(b) only the solution 777 = 2 in all other cases. 
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Proof: 

Case 1. Let m E 0(8). If m = 0, Iz1 + ab = 0 is impossible. If m + 0, we 
write 777 = 2 • 3s • n with 4|n, 3|n, and therefore Z7m E 0 (mod Vn) by (21). Thus, 
if 2z2 + ab = Um, we have (2s)2 E -2a£ (mod Vn) , which is impossible, since 

R ^ J = -1 by (19), (20), (16), (17), and the assumption. 

Case 2- Let 7?? E 4(8). If m = 4, then there exists a solution iff 2s2 = 
ab(a2 + 1). Since a2 - db2 = -4, we have (£>, a2 + 1) = 1 or 3. But a2 + 1 £ 
0(3); therefore, (2?, a2 + 1) = 1. It is obvious that (a, £>) = (a, a + 1) = 1 . 
So we must have a = t2, b = r2, and a2 + 1 = 2A2, so that t4 + 1 = 2\2. In [6] 
W. Ljunggren proved that the diophantine equation Ax2 - By1* = 1 has at most one 
solution in positive numbers x and y. In our case, this is (t, X) = (±1, ±1), 
which corresponds to a = 1, so b = 1 = v2 and d = 5. 

If 777 # 4, then we write T?? = 4 + 2 • 3s * n with 4|n, 3|n, and therefore, 

£/m E -(a3/? + 2aZ>) (mod Vn) by (21). 

Hence, if 2s2 + ab = £/m, we have 2s2 E -aM<22 + 3) E -2bV3 (mod 7n), which is 
impossible, since 

-2bV, (-2bV3\ -1 by (19), (20), (16), (17), (24), and the assumption. 

Case 3- Let m - 2(4). If m = 2, then s = 0 is a solution. If m ^ 2 , then 
we write m = 2 + 2 • 3s * n, with 2Jn, 3Jn, and thus, 

Z7m E -ofc (mod Vn) by (21). 

Hence, if 2s2 + ab = t/OT, we have (2s)2 E -4aZ? (mod 7n) , which is impossible, 
since 

/z4a^\ = _x b y (19)^ (16)^ (1?)^ a n d t h e a s s u m p t i o n s 

The following corollaries are direct results of the previous theorems. 
Hence, the proofs are omitted. 

Corollary 7': Let a E 1, 3(8) and b = 1(8), or a = 5, 7(8) and b = 7(8). Then, 
the equation x2 = kdz* + kabdz1 + (a2 + 2)2 has 

(a) two solutions (x, s) = (±3, 0), (±7, ±1) if d = 5, 

(b) only the one solution (x, z) = (±(a2 + 2 ) , 0) in all other cases. 

Corollary 8: Fm = 2z2 + 1 iff m = ±1, 2, 4. 

4. GENERALIZED FIBONACCI NUMBERS OF THE FORM \xz2 - v 

Lemma 1: The generalized Fibonacci numbers Um have the form 

U2n+i = &(/2„+i(a2) + 1), UZm = abf2n(a2) 
and the generalized Lucas numbers Vm have the form 

V2n + 1 = < ^ 2 n + 1 ( a 2 ) , F2n = ^ 2 n ^ ) + 2, 
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Ukn±l ~ ^2n±1^2n 

Uhn ~ ^2n -l"^2n+l 

Ukn = ^2n+1^2n-l 

Ukn-2 = ^2rT2n-2 

- h 
- ah 
+ ah 
- ah 

where fm9q E Z[a2] for each m E Z and f , , qn have no constant term. 

Proof: U2n + i ~ M/zn+iC^2) + ! ) • The proof is by induction on n. If n = 
0, we have Ui = hs and the relation is true for f\(a2) E 0. Let us now assume 
the proposition is true for all values less than or equal to n. Then we have 

U2n+3 = aUin+2 + U2n+1 by (1) 
= a(aU2n + 1 + Z72n) + U2n + 1 

= (a2 + l ) M / 2 n + 1 ( a 2 ) + 1) + aUZn by assumption 

= (a2 + Dh(f2n+1(a2) + 1) + a ( a t / 2 n _ x + U2n„2) 

= (a 2 + Db(f2n+1(a2) + 1) + a ^ C / ^ ^ C a 2 ) + 1) + af/2n_2 by 

- ••• - M / 2 n + 3 ( a 2 ) + 1) + aZ/0 = Hf2n+3(a2) + 1 ) , ' assumption 

wi th f2n+3(a2) having no c o n s t a n t t e rm. 
In t h e same way, we can prove t h e o t h e r c a s e s . 

Lemma 2: The fo l lowing i d e n t i t i e s h o l d : 

(36) 

(37) 

(38) 

(39) 

Ukn-i = U2n.2V2n + ab (40) 

bVm+n = Vrn-Jn + UmVn+1 (41) 
V2n + 1 = « + l - (-!>"<* («) 

Proof of (36) : We have 2£/4 n ± 1 = U2n±1V2n + U2nV2n±1 by ( 5 ) ; t h u s , 

U^ntl + b - . 

It is therefore sufficient to show that 

UznVzn+l + 2b = U2n+1V2n (43) 
and 

^ n ^ n - l + 2b = VZn_J2n. (44) 

We will prove (43) by induction on n. For n = 0, (43) is true, because 
^o^±i + 22? = £/±i'7o- Under the assumption that (43) is true for ns it is enough 
to show that U2n+2V2n+3 + 2h = U2n+3V2n. By using (1) and (2), we find that it 
is equivalent to U2nV2n+1 + 2h = U2n+1V2n, which holds by assumption. In the 
same way, (44) can be proved. 

Proof of (37)• By using (5), it is enough to show that 

^2nV2n = U2n_1V2n + 1 - ah9 (45) 

which can be proved by induction on n with the aid of (1) and (2). Similarly, 
(38) , (39), and (40) can be proved. 
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Proof of (41): We again use induction on n. For n - 0, it must first be 
proved that bVm = £/m_iF0 + JJ^^ = 2Um.1 + aUm. This can be proved by induction 
on m* The remainder of the proof is straightforward. 

Proof of (42): This follows by induction on n using (8) and (2). 

Lemma 3: If b = 1, then (Um, Vm±n)\Vn. 

Proof: By (4), it suffices to show that g | Vn , where g = {Um5 Vm + n) . By 
(41)"m^n-i^n- If Gi = (#» Um-i)> then ^ | £/OT and ^1|Z7m_i, so that g1\Um_z. 
Hence, 91\b. But b = 1.. Therefore, # = 1 and ̂  | Vn. 

Corol lary 9: If fc = 1, then (U2n±1, Vln) = 1. 

Proof: Let ̂  be as in Lemma 3, with m = 2n ± 1 and n = +1, then ^|F± 1 or 
^ja. Since g\U2n±i and £7|a, Lemma 1 implies g\b. However 5 (a, 2?) = 1. Hence, 
g = l. ' ' 

Theorem 7°  Let b = 1. Then, the equation Um = z2 - bs m = 1(2), has no solu-
tion. 

Proof: By (36), we have U2n±1V2n
 = ^ • Hence, Corollary 9 implies that 

U2n±i ~ z\ and VTm ~ S25 which is impossible by (28). 

Theorem 8: Let b = 1 and a2 + 2 = p, p a prime. Then, the equation 

Um = s2 - a, 77? = 0(2) , 

has 

(a) the solutions m = -2, 0, 4, 6, if d = 5, 

(b) the solutions /r? = -2, 4, if d = 13, 
(c) the solutions w = -2, 0, 6, if a is a perfect square, d + 5, 

(d) only the solution m - -2 in all other cases. 

Proof: 

Case 1 . Let m = 4n - 2. By ( 3 9 ) , [ / 2 / 2 w - 2 = s 2 ° Lemma 3 Impl ies t h a t 

C ^ n ' T/2n-2>|P° 
Hence, we have two p o s s i b i l i t i e s : 

'(a) U2n = ^ and F 2 n _ 2 = W2
2 or (b) J/2n = pWl and 7 2 n _ 2 = p ^ 2 . 

The f i r s t i s imposs ib le by ( 2 8 ) . The second can be w r i t t e n by (5) as 

UnK = PWl> V2n-2 = P^2-
Let re £ 0 ( 3 ) . Then equation (10) impl ies that (£/„, 7„) = 1, and so 

Un = p t \ Vn - v \ V2n_2 = pWl <«> 
Un = £ 2 , 7n = p r 2 , F 2 n . 2 = pW\. (47) 

Equation (46) does not possess any solution, since the possible values of n9 
by (28), In order for Vn to be a perfect square, do not yield a solution of 
Un = pt2. 
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By using (30) and direct computation, we find that (47) has only one solu-
tion, which is n = 2 or 77? = 6 provided a is a perfect square. 

Let n E 0(3). Equation (10) implies that (Un, Vn) = 2, and so we have to 
check the following subcases: 

3̂X " 2P*2> vsx = 2p2> V2n_2= pW2
2, (48) 

or 
U3X = 2t2, V3X = 2pr2, V2n_2 = pW2

2, (n = 3A). (49) 
By (29) and the assumption, V3X = 2v2 is possible only for A = 0 or A = ±2 in 
the case d = 5. The value A = 0 implies n = 0 or m = -2, which gives a solu-
tion to (48). The values X = ±2, d = 5, do not give a solution, since F±6 = 
±8 + 2pt2. 

According to (31), the only values of X for which a solution of (49) may 
exist are X = 2 if d = 5, or X = 0 and X = ±1. Now, A = 0 does not give any 
solution, because we would have pr2 = 1. Similarly, X = ±1 does not give any 
solution, since we would have V±3 = ±a(a2 + 3) = 2pt2, which is impossible be-
cause p\a and pjf(a2 + 3) when a2 + 3 = p + 1. Finally, X = 2, d = 5, does not 
give any solution, since Ls = 18 4" 2 • 3r2. 

Case 2. Let 777 = 4n. By (37), £/2n-î 2n+i = £2- Now Lemma 3 implies that 
(̂ 2n-i' ̂ 2n+i)I?' s o w e n a v e t w o possibilities, which are 

U2n-i = W\, V2n+1 = Wl (50) 
or 

"in-l = P*2 = 72*2> ^2n+l = V2I>2. (51) 

By using (28) and (30), we find that (50) has only the solutions: 

(a) m = 0, 4, if d = 5, 

(b) m = 4, if d = 13, 

(c) 777 = 0, if a is a perfect square, <f ̂  5. 

Using (13) for 2n + 1 = 4A ± 1, we have 

2r2n±i = - 2 ^ - , . ! = ••• E ±27±1 (mod 72) . 

Therefore, since V2n + i = pP2 = 72r2, we have (a2 + 2)|7±1 or p|a, which is im-
possible. Thus, (51) has no solution. 

Corollary 10: For each d = a2 + 4, a = 1(2), the diophantine equation 

x2 = cfe4 - 2dz2 + a2 

has no solution. 

Corollary 11: Let d = a2 + 4 and a2 + 2 = p, where p is a prime. Then, the 
diophantine equation x2 = dzh - 2adz2 + (a2 + 2) 2 has: 

(a) Four solutions, (x3 z) = (±3, 0), (±2, ±1), (±7, ±2), (±18, ±3), if d = 5. 

(b) Two solutions, (x, z) = (±11, 0), (±119, ±6), if d = 13. 

(c) Three solutions, (x, z) = (±(a2 + 2 ) , 0), (±2, ±t), (±(a6 + 6a4 + 9a2+ 2), 
±t(a2 + 2)), if a - t2 is a perfect square. 

(d) Only the solution (a?, s) = (±(a2 + 2), 0) in all other cases. 

When a = 1 in Theorem 8, we have the following result, found in [8]. 
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Corollary 12: Fm = z2 - 1 iff m = -2, Os 4, 6. 

The next result is an extension of Theorem 7. 

Theorem 9: Let Z? = 1. Thens the equation Um = 2s2 - b, m E 1(2), has only the 
solutions 7W = ±1. 

Proof: Equation (36) implies that U2n±1V2n - b = 2;?2 - 2?, for w = 4n ± 1. 
Hence, U2m±1V2n = 2s2. By Corollary 9, 

U2n±i = 2t2, V2n = r2 or *72„±, = t2, F2n = 2r2. 

Now 72n = r2 is impossible by (28) and the second case implies, using (30) and 
(29), that n = 0 or m = ±1. 

The following result is an extended parallel of Theorem 8, 

Theorem 10: Let b = 1 and a2 + 2 = p, where p is a prime. Then, the equation 
Um = 2z2 ~ a, m E 0(2) has 
(a) the solutions m = -2, 2 if a is a perfect square, 

(b) only the solution 777 = -2 in all other cases. 

Proof: 

Case 1 . Let 777 = kn - 2, Equation (39) implies that UznVm-i = 2s2. But, 
by Lemma 3, (U2n, V2n_2) | 72, where V2 = p, so that (Z72n, V2n-2) = 1 or p. If 
(U2n5 V2n-2) = 1J then we must have 

U2n = 2t2, F2n_2 = r2 or £/2„ = t 2 , V2n_2 = 2r2. 

The first case is impossible by (28). The second case has, by (30) and (29), 
only the solution n - 1 or m = 2 if a is a perfect square. 

Now, let (U2n9 V2n-2) - p. We then have to check two possibilities: 

U2n = pt2, 72n_2 = 2pp2 or U2n = 2p£2, F2n_2 = pr2. 

In the first case we must have, by (9), n E 1(3), say n = 3X + 1. By (5), 
we also have UnVn = pt2. But (£/n, 7M) = 1; therefore, we have 

Un = pW\, Vn = ¥2, Vxn_z = 2pr2, (52) 
or 

Un = Kl> Vn = pW2
2, V2n_2 = 2pr2. (53) 

Equation (52) has no solution since, by (28), the only solution of Vn = W2 is 
n = 1, for which Un = pW2 is impossible. Equation (53) has no solution either 
since, by (30), the only possible value for n of U - W2 is n = 1, but then 
V1 = a = p^2, which is impossible. 

For the second case we must have, by (9), 3|n, say n - 3X. By (5), we have 
U3XV3X = 2pt2. Since, by (10), (U3X 9 F3A) = 2, we must check the following 
subcases: 

3̂A = ty^ls *3A = 2P2, ̂ - 2 = P^l (54) 

[73A = ( 2 r , ) 2 , V3X = 2 p r 2 , 7 2 n . 2 = pr2; (55) 

3̂A = 2prf , V3X = ( 2 P 2 ) 2 , F 2 n _ 2 = pr2; (56) 

^3A = 2^ i> V3X = 4 p r 2 , F 2 n _ 2 = p r 2 . (57) 
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By (29), the only possible solutions of (54) are A = 0 for each d, and X 
±2 if d = 5. We know X = 0 is a solution, since UQ = 0 = 4pr\ with r1 = 0 an 
7_2 = pr2 = V2r2 with r = ±1. 

Since F±e = ±8 + 4 • 3 • r2, X = ±2 is not a solution of (54). By (30), the 
only possible solutions of (55) are X = 0, and X = 4 if d - 5. It is obvious 

o = 2 * 2° V2. that X = 0 is not a solution, since V0 = 2 ̂  2 • F2. Neither is X = 4 a solu 
tion, since L12 = 322 ̂  2 • 3 • r2. In the same way, we can prove that (56) and 
(57) have no solutions. The possible values X = ±1 in (57) do not yield a so-
lution, since p = a2 + 2|a(a2 + 3) = V±3. 

Case 2. Let m = 4n. By (37), U2n_1V2n + 1 = 2s2. Using Lemma 3 and the 
assumption, (U2n_19 V2n + 1) = 1 or p. 

If (U2n_19 V2n+1) = 1, we have 

U2n-1 = 2*2> ^2n + l = *' (58> 
or 

^2»-l = *2. 72n+l = 2P2,„ (59) 

By (31) and (28), (58) has no solution. By (29), (59) has no solution. 

l f (U2n-1> F2n + l) = P> w e h a v e 

^2n-l = 2P^?' F2n + 1 = V*\ (60> 
or 

^2«-l = PS1> F2n + 1 = 2P;32- (61> 

Neither (60) nor (61) has a solution by using a proof similar to that given at 
the end of Theorem 8. 

The following are immediate consequences of the preceding theorems. 

Corol lary 13: If d = a2 + 4, a = 1(2), then the equation x2 = kdzh - kdz2 + a2 

has only the solution (x, z) = (±a, 0). 

CoroMary 14: Let d = a2 + 4 and a2 + 2 = p, where p is a prime. Then, the 
equation x2 = kdzh - kadz1 + (a2 + 2) 2 has 

(a) two solutions, (x, s) = (±(a2 + 2 ) , 0), (±(a2 + 2), ±r) if a is a perfect 
square, a = r2, 

(b) only the one solution («x, s) = (±(a2 + 2), 0) in all other cases. 

Corol lary 15: Fm = 2s2 - 1 iff m = ±1, ±2. 

5. GENERALIZED LUCAS NUMBERS OF THE FORM \xz2 ± V 

Theorem 11 : The equation Vm = z2 + a, m = 1(2), has only the solution m = 1. 

Proof: 

Case 1 . Let m = 4n - 1. By (42), V2n-iV2n = s2- Since (72n-i, 72n) = 1. 
we have F2n_x = t2, F2n = r2, which is impossible by (28). 

Case 2. Let m = 4n + 1. By (42), 72„72n+1 - 2a = s2. Hence, using (8) and 
(42), we have 

{V% - 2(-l)n}{VnVn+1 - (-l)»a} - 2a = s2, 
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which implies that VnMn = z1 with Mn = V2Vn + x - (-l)naFn - 2(-l)nVn+1. Let p 
be an odd prime and let pe\\Vn. Since (7n+1, 7„) =••• = (Vl5 70) = (a, 2) = 1, 
it follows that plMn. This implies e = 0(2) and therefore Vn = t2 or Vn = 2t2. 
Using (28) and (29), we find that the possible solutions are m = 1, 5, 13, 25, 
-23 if d = 5, 777 = 1, 13 if d = 13, m = 1, 5, 25, -23 if <f = 29, m = 1, 5 if a = t2 
and d + 5, 77? = 1 otherwise. Obviously, 777 = 1 is a solution. For 777 = 5 and a = 
t2, we have (a2 + 2) 2 + a2 = r2, which is impossible because both a and a2 + 2 
are odd. By a direct computation of each corresponding Vm in all other cases, 
we see that no other solutions exist. Note that for d = 29, 

V25 = 766628450142675125., 

Following an argument similar to Theorem 11, we can prove Theorem 12. 

Theorem 12: The equation Vm = z2 - a, m E 1(2) has only the solution 77? = -1. 

Corol 1 ary 16: If b = 15 then the diophantine equations 

dy2 = z1* + 2az2+a2 + 4 and dy2 = ̂  - 2as2 + a2 + 4 

have only the solution (2/, 2) = (±1, 0). 

The next two theorems are similar to the last two, but 77? is even. 

Theorem 13- Let p be an odd prime. Then, the equation Vm = z2 + (p - 2) , 77? = 
0(2) has 

(a) the solution 777 = 0 if p = 3, 

(b) the solutions 777 = ±2, ±4 if d = 5 and p = 5, 

r 
(c) at most n (s- + 1) + 1 solutions if 

i-i 

p _ 4 = q*i • <7«* • • - • • g** 

as its unique factorization. 

Proof: 

Case 1 . Let 777 = 4n. By (8), 72
n - z2 = p, which implies that 

V2n = ± £ ^ or V2n - Z ^ 1 by (19). 

If p = 3, then V2n = 2, which implies that n = 0 or /n = 0 is a solution with 
s = 0. If p = 5, then F2n = 3, which can only be true if n = ±1 and d = 5 or 
777 = ±4 and <2 = 5. If p > 5, there exists at most one solution. 

Case 2. Let m= 4n+2. By (8), ̂ n + i" s 2 = P~ 4- If p = 3, then V2n + i = 0> 
which is impossible. If p = 5, then V2n+i = i1 a n d t n e only possibilities for 
solutions are n = 0 or -1 and d = 5 or 777 = ±2 and d = 5. If p > 5, then 

d1 + d2 
V2n+1 = ± ^1 > 0, d2 > 0, 

where (<i15 d2) runs over all the divisors of p - 4 with d1d2 = p - 4. Since the 
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number of divisors of p - 4 is O (s. + 1) , the theorem is proved. 
i = i z 

In the same way, we can prove 

Theorem 14: Let p be an odd prime. Then, the equation Vm = z2 - (p - 2), m = 
0(2), has 

(a) the solutions m = ±2, d = 5, i f p = 3 , 

(b) no solution if p = 5, 

I 
f2 

(c) at most 
' 1 

n(^ + 1) - 1 
i = i % 

+ 2 solutions if p - 4 is a perfect square 

o O ( s i + 1) + 2 solutions if p - 4 is not a perfect square, 

where p - 4 = q8!1 q^2 .-. qSr as its unique factorization. 

Corollary 17: 

(i) The diophantine equation zh + 2(p - 2)z2 + p(p - 4) = dy2 has 

(a) one solution for each d if p = 3, 

(b) four solutions for <i = 5 if p = 5, 
r 

(c) at most n (si + 1) + 1 solutions if p > 5 and p - 4 = q^1 . 
i = 1 

as its unique factorization. 

(ii) The diophantine equation zh - 2(p - 2)z2 + p(p - 4) = dy2 has 

(a) one solution for each d is p = 3, 

(b) no solution for each d if p = 5, 

n Ui + i) - i 
i = l 

+ 2 solutions if p - 4 is a 
perfect square 

1 
y II(#•£ + 1) + 2 solutions if p - 4 is not a 

i = 1 perfect square, 
where p > 5 and p - 4 = q^1 . . . g*r as its unique factorization. 

Corollary 18: The following can be found in [4] and [8]: 

Lm = z2 + 1 iff m = 0, 1, 

Lm = z2 - 1 iff m = -1, ±2. 

By an argument similar to Theorems 11 and 12, we can prove 

Theorem 15: 

(i) The equation Vm = 2z2 + a, 777 = 1(2), has only the solution m = 1. 

(ii) The equation 7m = 2s2 - a, m = 1(2), has 
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(a) the solutions m = ±1 is a is a perfect square, 

(b) only the solution m = -1 in all other cases. 

By using the method of Cohn, as before, we can also prove 

Theorem 16: Lm = 2z2 + 15 777 E 0(2), iff 77? = ±2, 

Lm = 2z2 - 1, 7?? E 0(2), iff 7?? = ±4. 

Corol lary 19: Lm = 2s2 + 1 iff 7?? = ±2, 1, 

Lm = 2s2 - 1 iff 7?? = ±1, ±4. 
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