GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS

JANNIS A. ANTONIADIS
University of Thessaloniki, Greece
(Submitted May 1983)
\section*{1. INTRODUCTION}

The object of this paper is to generalize the results of Finkelstein [3], [4], and Robbins [8] about the Fibonacci and Lucas numbers of the form $z^{2} \pm 1$, by using the method of Cohn [2]. Some results which contain the Fibonacci and Lucas numbers of the form $2 z^{2} \pm 1$ as special cases are also given.

In all cases we obtain information about the solution of an infinite class of biquadratic diophantine equations, with the exception of Theorems 8 and 10 , where it is not known if the class considered is finite or infinite [5].

The following notation will be used:

- F_{m}, L_{m} for the (usual) Fibonacci, Lucas numbers.
- $a \equiv b(\bmod c)$ or $a \equiv b(c)$ for congruences.
- (a / b) for the Jacobi quadratic symbol.
- The solutions ($\pm x, \pm y$) of a diophantine equation are counted once if x and y possess only even exponents.

2. PRELIMINARIES

Definition 1: Let $d \in N, d \neq 0$, and d not be a square.
(i) d will be called of the first kind if the Pellian equation $x^{2}-d y^{2}=$ -4 has a solution with both x and y odd integers.
(ii) d will be called of the second kind if d is not of the first kind and the Pellian equation $x^{2}-d y^{2}=4$ has a solution with both x and y odd integers.

Remark: A necessary but not sufficient condition for d to be of the first or second kind is $d \equiv 5(8)$. A counterexample is $d=37$.

Definition 2: Let $d \in N$ be of the first or the second kind with $d=5+8 v$. Let $\alpha=\frac{1}{2}(\alpha+b \sqrt{d})$ be the fundamental solution (see [7]) of $x^{2}-d y^{2}=-4$ or $x^{2}-d y^{2}=4$ and $\beta=\frac{1}{2}(\alpha-b \sqrt{d})$. We define, for all integers n,
$\left\{\begin{array}{l}U_{n}=d^{-1 / 2}\left(\alpha^{n}-\beta^{n}\right) \\ V_{n}=\alpha^{n}+\beta^{n} .\end{array}\right.$
It is easy to see that $U_{0}=0, U_{1}=b, V_{0}=2, V_{1}=\alpha$, and U_{n}, V_{n} are integers for each $n \in \mathbb{Z}$.

Supported by the Deutsche Forschungsgemeinschaft.

The terms of the sequence $\left\{U_{n}\right\}, n \in N \quad\left(\left\{V_{n}\right\}, n \in N\right)$ will be called generalized Fibonacci (Lucas) numbers.

Remarks: (i) From Definitions 1 and 2, it follows that both a and b must be odd.
(ii) If $b=1$, then our definition of generalized Fibonacci numbers agrees with the Fibonacci polynomials $U_{n}=F_{n}(\alpha)$, a odd, but in general, b can be different from one as for example in the case $d=61, a=39, b=5$.

From now on, d will always be of the first kind with the fundamental solution $\frac{1}{2}(\alpha+b \sqrt{d})$ of the corresponding Pellian equation $x^{2}-d y^{2}=-4$. According to [2], the following identities hold:

$$
\begin{align*}
& U_{n+2}=a U_{n+1}+U_{n}, \tag{1}\\
& V_{n+2}=a V_{n+1}+V_{n}, \tag{2}\\
& U_{-n}=(-1)^{n-1} U_{n}, \tag{3}\\
& V_{-n}=(-1)^{n} V_{n}, \tag{4}\\
& 2 U_{m+n}=U_{m} V_{n}+U_{n} V_{m}, \tag{5}\\
& 2 V_{m+n}=d U_{m} U_{n}+V_{m} V_{n}, \tag{6}\\
& (-1)^{n} 4=V_{n}^{2}-d U_{n}^{2}, \tag{7}\\
& V_{n}^{2}=V_{2 n}+(-1)^{n} \cdot 2, \tag{8}\\
& 2 \mid U_{n} \text { iff } 2 \mid V_{n} \text { iff } 3 \mid n, \tag{9}
\end{align*}
$$

$$
\left(U_{n}, V_{n}\right)= \begin{cases}1 & \text { if } 3 \nmid n \tag{10}\\ 2 & \text { if } 3 \mid n\end{cases}
$$

$$
\begin{equation*}
V_{n+12} \equiv V_{n}(\bmod 8) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
2 U_{m+2 N} \equiv(-1)^{N-1} 2 U_{m}\left(\bmod V_{N}\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
2 V_{m+2 N} \equiv(-1)^{N-1} 2 V_{m}\left(\bmod V_{N}\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
2 U_{m+2 N} \equiv(-1)^{N} 2 U_{m}\left(\bmod U_{N}\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
2 V_{m+2 N} \equiv(-1)^{N} 2 V_{m}\left(\bmod U_{N}\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
V_{n} \equiv 2(\bmod \alpha) \text { if } 2 \mid n \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
V_{n} \equiv(-1)^{n / 2} \cdot 2(\bmod b) \text { if } 2 \mid n \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
b \equiv 1(4), \tag{18}
\end{equation*}
$$

and, furthermore, for $k \in Z$, with $2 \mid k, 3 \nmid k$,

$$
\begin{align*}
& V_{k}>0 \text { and } V_{k} \equiv \begin{cases}3(8) & \text { if } k \equiv 2(4) \\
7(8) & \text { if } 4 \mid k\end{cases} \tag{19}\\
& \left(\frac{2}{V_{k}}\right)=(-1)^{k / 2}, \tag{20}\\
& U_{m+2 k} \equiv-U_{m}\left(\bmod V_{k}\right), \tag{21}\\
& V_{m+2 k} \equiv-V_{m}\left(\bmod V_{k}\right), \tag{22}
\end{align*}
$$

$$
\begin{align*}
\left(\frac{a}{V_{k}}\right) & =\left(\frac{-2}{a}\right), \tag{23}\\
\left(\frac{V_{3}}{V_{k}}\right) & =\left(\frac{-2}{a}\right), \tag{24}\\
\left(\frac{V_{k}}{U_{5}}\right) & =-\left(\frac{2}{b}\right) \text { provided that } 5 \nmid k, \tag{25}
\end{align*}
$$

the general solution of $x^{2}-d y^{2}=-4$ is $x=V_{2 n+1}, y=U_{2 n+1}$,
the general solution of $x^{2}-d y^{2}=4$ is $x=V_{2 n}, y=U_{2 n}$,
if $V_{n}=x^{2}$, then $\left\{\begin{array}{l}n=1 \text { if } a=t^{2} \text { and } d \neq 5 \\ n=1,3 \text { if } d=5 \\ n=3 \text { if } d=13,\end{array}\right.$
if $V_{n}=2 x^{2}$, then $\left\{\begin{array}{l}n=0 \\ \text { and } \\ n= \pm 6 \text { if } d=5,29,\end{array}\right.$
if $U_{n}=x^{2}$, then $\left\{\begin{array}{ll}n=0 \\ n=12 & \text { if } d=5 \\ n=2 & \text { if } a=t^{2} \\ n= \pm 1 & \text { if } b=r^{2},\end{array}\right.$ and $b=r^{2}$
if $U_{n}=2 x^{2}$, then $\left\{\begin{array}{l}n=0 \\ n=6 \text { if } d=5 \\ \text { and possibly the solutions } n= \pm 3 \text {. }\end{array}\right.$
We also need some values for U_{n} and V_{n} :

3. GENERALIZED FIBONACCI NUMBERS OF THE FORM $\mu z^{2}+v$

Theorem 1: Let $a \equiv 1,3(8)$ and $b \equiv 1(8)$. Then the equation

$$
U_{m}=a z^{2}+b, m \equiv 1(2),
$$

has
(a) the solutions $m= \pm 1, \pm 3$, and ± 5 if $d=5$,
(b) the solutions $m= \pm 1, \pm 5$ if $d=13$,
(c) the solutions $m= \pm 1, \pm 3$ if a and b are both perfect squares, $d \neq 5$,
(d) only the solutions $m= \pm 1$ in all other cases.

Proof: It is sufficient by (3) to consider only the cases $m \equiv 1(8)$, 3(16), and $5(16)$.

Case 1. Let $m \equiv 1(8)$. For $m=1, z=0$ is a solution. If $m \neq 1$, then we write $m=1+2 \cdot 3^{s} \cdot n$, where $4 \mid n, 3 \nmid n$, and $a z^{2}+b=U_{m} \equiv-U_{1}\left(\bmod V_{n}\right)$ by (21). Thus $(\alpha z)^{2} \equiv-2 a b\left(\bmod V_{n}\right)$. But

$$
\left(\frac{-2 \alpha b}{V_{n}}\right)=-1
$$

by (19), (20), (16), (17), and the assumption. Hence, $U_{m} \neq a z^{2}+b$.
Case 2. Let $m \equiv 3(16)$. If $m=3$, then $a z^{2}+b=\left(a^{2}+1\right) b$ iff $z^{2}=a b$ iff a and b are both perfect squares, since $(a, b)=1$.

If $m \neq 3$, then we write $m=3+2 \cdot 3^{s} \cdot n$, where $8 \mid n$, $3 \nmid n$, and $a z^{2}+b=U_{m}$ $\equiv-U_{3}\left(\bmod V_{n}\right) \equiv-\left(a^{2}+1\right) b\left(\bmod V_{n}\right)$, by (21). Thus $(a z)^{2} \equiv-a b V_{2}\left(\bmod V_{n}\right)$.

By applying (13) repeatedly, we obtain

$$
\begin{equation*}
2 V_{n} \equiv-2 V_{n-4} \equiv 2 V_{n-8} \equiv \cdots \equiv 2 V_{0} \equiv 4\left(\bmod V_{2}\right) \text {, } \tag{32}
\end{equation*}
$$

which by (19) implies $V_{n} \equiv 2\left(\bmod V_{2}\right)$. Thus $\left(V_{n}, V_{2}\right)=\left(2, V_{2}\right)=1$ and

$$
\left(\frac{V_{2}}{V_{n}}\right)=-\left(\frac{V_{n}}{V_{2}}\right)=-\left(\frac{2}{V_{2}}\right)= \pm 1 .
$$

Now ($-\alpha b V_{2} / V_{n}$) can be calculated to be -1 by using (19), (16), (17), (33), and the assumption. Hence, $U_{m} \neq a z^{2}+b$.

Case 3. Let $m \equiv 5(16)$. If $m=5$, then there exists a solution iff $a z^{2}+b=$ $\left(a^{4}+3 a^{2}+1\right) b$ iff $z^{2}=a\left(a^{2}+3\right) b$. Since b is odd and $b \mid U_{3}$,
$\left(b, V_{3}\right) /\left(U_{3}, V_{3}\right)=2$,
which implies $\left(b, V_{3}\right)=1$. Hence,

$$
z^{2}=a\left(a^{2}+3\right) b=V_{3} b \text { iff } b=r^{2} \text { and } a\left(a^{2}+3\right)=z_{1}^{2}
$$

By [1], the last equation has only the solutions $\left(z_{1}, \alpha\right)=(0,0),(\pm 2,1)$, $(\pm 6,3),(\pm 42,12)$. Since we have $a \equiv 1(2)$, the only possible solutions are $\left(z_{1}, a\right)=(\pm 2,1),(\pm 6,3)$. For $a=1$, we have $b=1=r^{2}$ and $d=5$. For $a=3$, we have $b=1=r^{2}$ and $d=13$.

If $m \neq 5$, then $m=5+2 \cdot 3^{s} \cdot n$ with $8 \mid n, 3 \nmid n$, and thus
$U_{m} \equiv-U_{5}\left(\bmod V_{n}\right) \equiv-\left(a^{4}+3 a^{2}+1\right) b\left(\bmod V_{n}\right)$ by (21).
Applying (15) repeatedly and using (4), we have
$2 V_{n} \equiv-2 V_{n-6} \equiv 2 V_{n-12} \equiv \cdots \equiv \pm 2 V_{2}\left(\bmod U_{3}\right)$.
Since $\left(V_{n}, V_{2}\right)=1$ implies $\left(2 V_{n}, U_{3}\right)=2$, we see that

$$
\begin{align*}
\left(\frac{U_{3} / 2}{V_{n}}\right)=\left(\frac{\left(a^{2}+1\right) / 2}{V_{n}}\right)\left(\frac{b}{V_{n}}\right) & =\left(\frac{V_{n}}{\left(a^{2}+1\right) / 2}\right)\left(\frac{b}{V_{n}}\right) \\
& =\left(\frac{ \pm V_{2}}{\left(a^{2}+1\right) / 2}\right)\left(\frac{b}{V_{n}}\right)=\left(\frac{b}{V_{n}}\right) \tag{35}
\end{align*}
$$

Now, if $a z^{2}+b=U_{m}$, we have
$(a x)^{2} \equiv-a\left(a^{4}+3 a^{2}+2\right) b \equiv-\alpha b V_{2} U_{3}\left(\bmod V_{n}\right)$,
which is impossible because $\left(-\alpha b V_{2} U_{3} / V_{n}\right)=-1$ by (19), (16), (17), (33), (35), and the assumption. Hence, $U_{m} \neq a z^{2}+b$.

Corollary 1: The diophantine equation $x^{2}=a^{2} d z^{4}+2 a b d z^{2}+a^{2}$ with $a \equiv 1$, 3(8) and $b \equiv 1(8)$, has
(a) three solutions $(x, y)=(\pm 1,0),(\pm 4, \pm 1),(\pm 11, \pm 2)$ if $d=5$,
(b) two solutions $(x, z)=(\pm 3,0),(\pm 393,16)$ if $d=13$,
(c) two solutions $(x, z)=(\pm \alpha, 0),\left(\pm \alpha\left(a^{2}+3\right), \pm t r\right)$, where $a=t^{2}$ and $b=r^{2}$ are both perfect squares, $d \neq 5$,
(d) only one solution $(x, z)=(\pm a, 0)$ in all other cases.

Proof: This follows directly from (26), Theorem 1, and Definition 2.
Following the arguments of Theorem 1 and Corollary 1, we have
Theorem 2: Let $b \equiv 1(8)$. Then the equation $U_{m}=z^{2}+b, m \equiv 1(2)$, has
(a) the solutions $m= \pm 1, \pm 3$, ± 5, if $d=5$,
(b) the solutions $m= \pm 1, \pm 3$, if $b=r^{2}, d \neq 5$,
(c) only the solutions $m= \pm 1$ in all other cases,
and
Corollary 2: The diophantine equation $x^{2}=d z^{4}+2 d b z^{2}+a^{2}$ with $b \equiv 1(8)$ has
(a) three solutions $(x, z)=(\pm 1,0),(\pm 4, \pm 1),(\pm 11, \pm 2)$, if $d=5$,
(b) two solutions $(x, z)=(\pm a, 0),\left(\pm \alpha\left(a^{2}+3\right), \pm \alpha r\right)$ if $b=r^{2}, d \neq 5$,
(c) only one solution $(x, z)=(\pm a, 0)$ in all other cases.

We now show the following results, which are similar to the above but with m even.

Theorem 3: Let $a \equiv 1,3(8)$ and $b \equiv 1(8)$ or $a \equiv 5,7(8)$ and $b \equiv 5(8)$. Then the equation $U_{m}=z^{2}+a b, m \equiv 0(2)$, has only the solution $m=2$.

Proof:
Case 1. Let $m \equiv 0(4)$. No solution exists for $m=0$; but if $m \neq 0$, then we write $m=2 \cdot 3^{s} \cdot n$ with $2 \mid n, 3 \nmid n$, and thus $U_{m} \equiv 0\left(\bmod V_{n}\right)$ by (21). If $U_{m}=$ $z^{2}+a b$ for some m, then we have $z^{2} \equiv-a b\left(\bmod V_{n}\right)$, which is impossible, since $\left(-a b / V_{n}\right)=-1$ by (19), (16), (17), and the assumption.

Case 2: Let $m \equiv 2(8)$. For $m=2$, we have the solution $z=0$. If $m \neq 2$, then we write $m=2+2 \cdot 3^{s} \cdot n$ with $4 \mid n, 3 \nmid n$, and thus

$$
U_{m} \equiv-U_{2}\left(\bmod V_{n}\right) \equiv-a b\left(\bmod V_{n}\right) \text { by }(21) \text {, }
$$

Thus, if $U_{m}=z^{2}+a b$, we should have $z^{2} \equiv-2 a b\left(\bmod V_{n}\right)$, which is impossible, since $\left(-2 a b / V_{n}\right)=-1$ by (19), (20), (16), (17), and the assumption.

Case 3: Let $m=6(8)$. If $m=6$, we have a solution iff
$z^{2}+a b=\left(a^{5}+4 a^{3}+3 a\right) b$ iff $z^{2}=a\left(a^{4}+4 a^{2}+2\right) b=a V_{4} b$.
But $b \mid U_{4}$; hence,
$\left(b, V_{4}\right) /\left(U_{4}, V_{4}\right)=1$ by (10).

Therefore, it follows that $b=t^{2}, a=r^{2}$, and $a^{4}+4 a^{2}+2=V_{4}=s^{2}$, which is impossible mod 4.

If $m \neq 6$, then we write $m=6+2 \cdot 3^{s} \cdot n$ with $4 \mid n, 3 \nmid n$, and thus
$U_{m} \equiv-U_{6}\left(\bmod V_{n}\right) \equiv-\left(a^{5}+4 a^{3}+3 a\right) b\left(\bmod V_{n}\right)$ by (21).
Hence, if $U_{m}=z^{2}+a b$, we have $z^{2} \equiv-a b\left(a^{4}+4 a^{2}+4\right) \equiv-a b\left(a^{2}+2\right)^{2}\left(\bmod V_{n}\right)$, which is impossible since
$\left(\frac{-a b\left(a^{2}+2\right)^{2}}{V_{n}}\right)=\left(\frac{-a b}{V_{n}}\right)=-1$ by (19), (16), (17), and the assumption.
Applying Theorem 1 (a) and Theorem 3, we now have
Corollary 3: (Theorem of Finkelstein [3], [9], [1])
$F_{m}=z^{2}+1$ iff $m= \pm 1,2, \pm 3, \pm 5$.
Using an argument similar to that of Theorem 3, we have Theorem 4 and two immediate corollaries.

Theorem 4: Let $b \equiv 1(8)$. Then, the equation $U_{m}=\alpha z^{2}+a b, m \equiv 0(2)$, has only the solution $m=2$.

Corollary 4: Let $d=a^{2}+4,2 \nmid a$. Then, the equation $U_{m}=\alpha z^{2}+\alpha$ has only the solution $m=2$.

Corollary 5: The diophantine equation $x^{2}=a^{2} d z^{4}+2 a^{2} d b z^{2}+\left(a^{2}+2\right)^{2}$ with $\bar{b} \equiv 1(8)$ has only the solution $(x, y)=\left(\pm\left(a^{2}+2\right), 0\right)$.

An argument similar to Theorem 3 will also give us the following extended result of Theorem 1.

Theorem 5: Let $a \equiv 1,3(8)$ and $b \equiv 1(8)$. Then, each of the equations
$U_{m}=2 a z^{2}+b, U_{m}=2 z^{2}+b, m \equiv 1(2)$,
has only the solutions $m= \pm 1$.
Corollary 6: Let $a \equiv 1,3(8)$ and $b \equiv 1(8)$. Then, the equations

$$
x^{2}=4 a^{2} d z^{4}+4 a b d z^{2}+a^{2} \quad \text { and } \quad x^{2}=4 d z^{4}+4 d b z^{2}+a^{2}
$$

have only the solution $(x, z)=(\pm a, 0)$.
The following is an extended result of Theorem 3 and is similar to Theorem 5 but with m even.

Theorem 6: Let $a \equiv 1,3(8)$ and $b \equiv 1(8)$, or $a \equiv 5,7(8)$ and $b \equiv 5(8)$. Then, the equation $U_{m}=2 z^{2}+a b, m \equiv 0(2)$ has
(a) the solutions $m=2$, 4 if $d=5$,
(b) only the solution $m=2$ in all other cases.

```
GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS
```

Proof:
Case 1. Let $m \equiv 0(8)$. If $m=0,2 z^{2}+a b=0$ is impossible. If $m \neq 0$, we write $m=2 \cdot 3^{s} \cdot n$ with $4 \mid n, 3 \nmid n$, and therefore $U_{m} \equiv 0\left(\bmod V_{n}\right)$ by (21). Thus, if $2 z^{2}+\alpha b=U_{m}$, we have $(2 z)^{2} \equiv-2 a b\left(\bmod V_{n}\right)$, which is impossible, since

$$
\left(\frac{-2 a b}{V_{n}}\right)=-1 \text { by }(19),(20),(16),(17), \text { and the assumption. }
$$

Case 2. Let $m \equiv 4(8)$. If $m=4$, then there exists a solution iff $2 z^{2}=$ $a b\left(a^{2}+1\right)$. Since $a^{2}-d b^{2}=-4$, we have $\left(b, a^{2}+1\right)=1$ or 3 . But $a^{2}+1 \neq$ $0(3)$; therefore, $\left(b, a^{2}+1\right)=1$. It is obvious that $(a, b)=(a, a+1)=1$. So we must have $a=t^{2}, b=r^{2}$, and $a^{2}+1=2 \lambda^{2}$, so that $t^{4}+1=2 \lambda^{2}$. In [6] W. Ljunggren proved that the diophantine equation $A x^{2}-B y^{4}=1$ has at most one solution in positive numbers x and y. In our case, this is $(t, \lambda)=(\pm 1, \pm 1)$, which corresponds to $a=1$, so $b=1=r^{2}$ and $d=5$.

If $m \neq 4$, then we write $m=4+2 \cdot 3^{s} \cdot n$ with $4 \mid n, 3 \nmid n$, and therefore, $U_{m} \equiv-\left(a^{3} b+2 a b\right)\left(\bmod V_{n}\right)$ by (21).
Hence, if $2 z^{2}+a b=U_{m}$, we have $2 z^{2} \equiv-a b\left(a^{2}+3\right) \equiv-2 b V_{3}\left(\bmod V_{n}\right)$, which is impossible, since

$$
\left(\frac{-2 b V_{3}}{V_{n}}\right)=-1 \text { by }(19),(20),(16),(17),(24), \text { and the assumption. }
$$

Case 3. Let $m \equiv 2(4)$. If $m=2$, then $z=0$ is a solution. If $m \neq 2$, then we write $m=2+2 \cdot 3^{s} \cdot n$, with $2 \mid n, 3 \nmid n$, and thus,

$$
U_{m} \equiv-a b\left(\bmod V_{n}\right) \text { by }(21) .
$$

Hence, if $2 z^{2}+a b=U_{m}$, we have $(2 z)^{2} \equiv-4 a b\left(\bmod V_{n}\right)$, which is impossible, since

$$
\left(\frac{-4 a b}{V_{n}}\right)=-1 \text { by }(19),(16),(17), \text { and the assumption. }
$$

The following corollaries are direct results of the previous theorems. Hence, the proofs are omitted.

Corollary 7: Let $a \equiv 1,3(8)$ and $b \equiv 1(8)$, or $a \equiv 5,7(8)$ and $b \equiv 7(8)$. Then, the equation $x^{2}=4 d z^{4}+4 a b d z^{2}+\left(a^{2}+2\right)^{2}$ has
(a) two solutions $(x, z)=(\pm 3,0),(\pm 7, \pm 1)$ if $d=5$,
(b) only the one solution $(x, z)=\left(\pm\left(a^{2}+2\right), 0\right)$ in all other cases.

Corollary 8: $\quad F_{m}=2 z^{2}+1$ iff $m= \pm 1,2,4$.

4. GENERALIZED FIBONACCI NUMBERS OF THE FORM $\mu z^{2}-\nu$

Lemma 1: The generalized Fibonacci numbers U_{m} have the form

$$
U_{2 n+1}=b\left(f_{2 n+1}\left(a^{2}\right)+1\right), \quad U_{2 m}=a b f_{2 n}\left(a^{2}\right)
$$

and the generalized Lucas numbers V_{m} have the form

$$
V_{2 n+1}=a g_{2 n+1}\left(a^{2}\right), \quad V_{2 n}=g_{2 n}\left(a^{2}\right)+2
$$

1985]
where $f_{m}, g_{m} \in \mathbf{Z}\left[\alpha^{2}\right]$ for each $m \in \mathbf{Z}$ and $f_{2 n+1}, g_{2 n}$ have no constant term.
Proof: $U_{2 n+1}=b\left(f_{2 n+1}\left(a^{2}\right)+1\right)$. The proof is by induction on n. If $n=$ 0 , we have $U_{1} \stackrel{=}{=}$, and the relation is true for $f_{1}\left(a^{2}\right) \equiv 0$. Let us now assume the proposition is true for all values less than or equal to n. Then we have

$$
\begin{aligned}
U_{2 n+3} & =a U_{2 n+2}+U_{2 n+1} \\
& =a\left(\alpha U_{2 n+1}+U_{2 n}\right)+U_{2 n+1} \\
& =\left(a^{2}+1\right) b\left(f_{2 n+1}\left(a^{2}\right)+1\right)+a U_{2 n} \text { by assumption } \\
& =\left(a^{2}+1\right) b\left(f_{2 n+1}\left(a^{2}\right)+1\right)+a\left(\alpha U_{2 n-1}+U_{2 n-2}\right) \\
& =\left(a^{2}+1\right) b\left(f_{2 n+1}\left(a^{2}\right)+1\right)+a^{2} b\left(f_{2 n-1}\left(a^{2}\right)+1\right)+a U_{2 n-2} \text { by } \\
& =\cdots=b\left(f_{2 n+3}\left(a^{2}\right)+1\right)+a U_{0}=b\left(f_{2 n+3}\left(a^{2}\right)+1\right),
\end{aligned}
$$

with $f_{2 n+3}\left(a^{2}\right)$ having no constant term.
In the same way, we can prove the other cases.
Lemma 2: The following identities hold:

$$
\begin{align*}
& U_{4 n \pm 1}=U_{2 n \pm 1} V_{2 n}-b \tag{36}\\
& U_{4 n}=U_{2 n-1} V_{2 n+1}-a b \tag{37}\\
& U_{4 n}=U_{2 n+1} V_{2 n-1}+a b \tag{38}\\
& U_{4 n-2}=U_{2 n} V_{2 n-2}-a b \tag{39}\\
& U_{4 n-2}=U_{2 n-2} V_{2 n}+a b \tag{40}\\
& b V_{m+n}=U_{m-1} V_{n}+U_{m} V_{n+1} \tag{41}\\
& V_{2 n+1}=V_{n} V_{n+1}-(-1)^{n} a \tag{42}
\end{align*}
$$

Proof of (36): We have $2 U_{4 n \pm 1}=U_{2 n \pm 1} V_{2 n}+U_{2 n} V_{2 n \pm 1}$ by (5); thus,

$$
U_{4 n \pm 1}+b=\frac{U_{2 n \pm 1} V_{2 n}+U_{2 n} V_{2 n \pm 1}+2 b}{2}
$$

It is therefore sufficient to show that
$U_{2 n} V_{2 n+1}+2 b=U_{2 n+1} V_{2 n}$
and
$U_{2 n} V_{2 n-1}+2 b=U_{2 n-1} V_{2 n}$.
We will prove (43) by induction on n. For $n=0$, (43) is true, because $U_{0} V_{ \pm 1}+2 b=U_{ \pm 1} V_{0}$. Under the assumption that (43) is true for n, it is enough to show that $U_{2 n+2} V_{2 n+3}+2 b=U_{2 n+3} V_{2 n}$. By using (1) and (2), we find that it is equivalent to $U_{2 n} V_{2 n+1}+2 b=U_{2 n+1} V_{2 n}$, which holds by assumption. In the same way, (44) can be proved.

Proof of (37): By using (5), it is enough to show that
$U_{2 n} V_{2 n}=U_{2 n-1} V_{2 n+1}-a b$,
which can be proved by induction on n with the aid of (1) and (2). Similarly, (38), (39), and (40) can be proved.
[Aug.

generalized fibonacci numbers and some diophantine equations

Proof of (41): We again use induction on n. For $n=0$, it must first be proved that $b V_{m}=U_{m-1} V_{0}+U_{m} V_{1}=2 U_{m-1}+a U_{m}$. This can be proved by induction on m. The remainder of the proof is straightforward.

Proof of (42): This follows by induction on n using (8) and (2).
Lemma 3: If $b=1$, then $\left(U_{m}, V_{m \pm n}\right) \mid V_{n}$.
Proof: By (4), it suffices to show that $g \mid V_{n}$, where $g=\left(U_{m}, V_{m+n}\right)$. By (41), $g \mid U_{m-1} V_{n}$. If $g_{1}=\left(g, U_{m-1}\right)$, then $g_{1} \mid U_{m}$ and $g_{1} \mid U_{m-1}$, so that $g_{1} \mid U_{m-2}$. Hence, $g_{1} \mid b$. But $b=1$. Therefore, $g_{1}=1$ and $g \mid V_{n}$.

Corollary 9: If $b=1$, then $\left(U_{2 n \pm 1}, V_{2 n}\right)=1$.
Proof: Let g be as in Lemma 3, with $m=2 n \pm 1$ and $n=\mp 1$, then $g \mid V_{ \pm 1}$ or $g \mid a$. Since $g \mid U_{2 n \pm 1}$ and $g \mid a$, Lemma 1 implies $g \mid b$. However, $(a, b)=1$. Hence, $g=1$.

Theorem 7: Let $b=1$. Then, the equation $U_{m}=z^{2}-b, m \equiv 1(2)$, has no solution.

Proof: By (36), we have $U_{2 n \pm 1} V_{2 n}=z^{2}$. Hence, Corollary 9 implies that $U_{2 n \pm 1}=z_{1}^{2}$ and $V_{2 n}=z_{2}^{2}$, which is impossible by (28).

Theorem 8: Let $b=1$ and $a^{2}+2=p, p$ a prime. Then, the equation $U_{m}=z^{2}-\alpha, m \equiv 0(2)$,
has
(a) the solutions $m=-2,0,4,6$, if $d=5$,
(b) the solutions $m=-2,4$, if $d=13$,
(c) the solutions $m=-2,0,6$, if a is a perfect square, $d \neq 5$,
(d) only the solution $m=-2$ in all other cases.

Proof:
Case 1. Let $m=4 n-2$. By (39), $U_{2 n} V_{2 n-2}=z^{2}$ 。 Lemma 3 implies that $\left(U_{2 n}, V_{2 n-2}\right) \mid p$.
Hence, we have two possibilities:
(a) $U_{2 n}=W_{1}^{2}$ and $V_{2 n-2}=W_{2}^{2}$ or (b) $U_{2 n}=p W_{1}^{2}$ and $V_{2 n-2}=p W_{2}^{2}$.

The first is impossible by (28). The second can be written by (5) as
$U_{n} V_{n}=p W_{1}^{2}, V_{2 n-2}=p W_{2}^{2}$.
Let $n \not \equiv 0(3)$. Then equation (10) implies that $\left(U_{n}, V_{n}\right)=1$, and so
$U_{n}=p t^{2}, V_{n}=r^{2}, V_{2 n-2}=p W_{2}^{2}$
$U_{n}=t^{2}, V_{n}=p r^{2}, V_{2 n-2}=p W_{2}^{2}$.
Equation (46) does not possess any solution, since the possible values of n, by (28), in order for V_{n} to be a perfect square, do not yield a solution of $U_{n}=p t^{2}$.

generalized fibonacci numbers and some diophantine EQuations

By using (30) and direct computation, we find that (47) has only one solution, which is $n=2$ or $m=6$ provided a is a perfect square.

Let $n \equiv 0(3)$. Equation (10) implies that $\left(U_{n}, V_{n}\right)=2$, and so we have to check the following subcases:

$$
\begin{equation*}
U_{3 \lambda}=2 p t^{2}, V_{3 \lambda}=2 r^{2}, V_{2 n-2}=p W_{2}^{2}, \tag{48}
\end{equation*}
$$

or
$U_{3 \lambda}=2 t^{2}, V_{3 \lambda}=2 p r^{2}, V_{2 n-2}=p W_{2}^{2}, \quad(n=3 \lambda)$.
By (29) and the assumption, $V_{\widehat{3} \lambda}=2 r^{2}$ is possible only for $\lambda=0$ or $\lambda= \pm 2$ in the case $d=5$. The value $\lambda=0$ implies $n=0$ or $m=-2$, which gives a solution to (48). The values $\lambda= \pm 2, d=5$, do not give a solution, since $F_{ \pm 6}=$ $\pm 8 \neq 2 p t^{2}$.

According to (31), the only values of λ for which a solution of (49) may exist are $\lambda=2$ if $d=5$, or $\lambda=0$ and $\lambda= \pm 1$. Now, $\lambda=0$ does not give any solution, because we would have $p r^{2}=1$. Similarly, $\lambda= \pm 1$ does not give any solution, since we would have $V_{ \pm 3}= \pm \alpha\left(a^{2}+3\right)=2 p t^{2}$, which is impossible because $p \nmid a$ and $p \nmid\left(a^{2}+3\right)$ when $\alpha^{\frac{2}{2}}+3=p+1$. Finally, $\lambda=2, d=5$, does not give any solution, since $L_{6}=18 \neq 2 \cdot 3 r^{2}$.

Case 2. Let $m=4 n$. By (37), $U_{2 n-1} V_{2 n+1}=z^{2}$. Now Lemma 3 imp1ies that $\left(U_{2 n-1}, V_{2 n+1}\right) \mid p$, so we have two possibilities, which are
$U_{2 n-1}=W_{1}^{2}, V_{2 n+1}=W_{2}^{2}$
or

$$
\begin{equation*}
U_{2 n-1}=p t^{2}=V_{2} t^{2}, V_{2 n+1}=V_{2} r^{2} \tag{50}
\end{equation*}
$$

By using (28) and (30), we find that (50) has only the solutions:
(a) $m=0,4$, if $d=5$,
(b) $m=4$, if $d=13$,
(c) $m=0$, if a is a perfect square, $d \neq 5$.

Using (13) for $2 n+1=4 \lambda \pm 1$, we have
$2 V_{2 n \pm 1} \equiv-2 V_{4 \lambda-4 \pm 1} \equiv \cdots \equiv \pm 2 V_{ \pm 1}\left(\bmod V_{2}\right)$.
Therefore, since $V_{2 n+1}=p r^{2}=V_{2} r^{2}$, we have $\left(a^{2}+2\right) \mid V_{ \pm 1}$ or $p \mid \alpha$, which is impossible. Thus, (51) has no solution.

Corollary 10: For each $d=a^{2}+4, a \equiv 1(2)$, the diophantine equation $x^{2}=d z^{4}-2 d z^{2}+a^{2}$
has no solution.
Corollary 11: Let $d=a^{2}+4$ and $a^{2}+2=p$, where p is a prime. Then, the diophantine equation $x^{2}=d z^{4}-2 a d z^{2}+\left(a^{2}+2\right)^{2}$ has:
(a) Four solutions, $(x, z)=(\pm 3,0),(\pm 2, \pm 1),(\pm 7, \pm 2),(\pm 18, \pm 3)$, if $d=5$.
(b) Two solutions, $(x, z)=(\pm 11,0),(\pm 119, \pm 6)$, if $d=13$.
(c) Three solutions, $(x, z)=\left(\pm\left(\alpha^{2}+2\right), 0\right),(\pm 2, \pm t),\left(\pm\left(\alpha^{6}+6 a^{4}+9 \alpha^{2}+2\right)\right.$, $\left.\pm t\left(a^{2}+2\right)\right)$, if $a=t^{2}$ is a perfect square.
(d) Only the solution $(x, z)=\left(\pm\left(\alpha^{2}+2\right), 0\right)$ in all other cases.

When $a=1$ in Theorem 8, we have the following result, found in [8].

Corollary 12: $\quad F_{m}=z^{2}-1$ iff $m=-2,0,4,6$.
The next result is an extension of Theorem 7.
Theorem 9: Let $b=1$. Then, the equation $U_{m}=2 z^{2}-b, m \equiv 1(2)$, has only the solutions $m= \pm 1$.

Proof: Equation (36) implies that $U_{2 n \pm 1} V_{2 n}-b=2 z_{2}^{2}-b$, for $m=4 n \pm 1$ 。 Hence, $U_{2 m \pm 1} V_{2 n}=2 z^{2}$. By Corollary 9,
$U_{2 n \pm 1}=2 t^{2}, V_{2 n}=r^{2}$ or $U_{2 n \pm r}=t^{2}, V_{2 n}=2 r^{2}$.
Now $V_{2 n}=r^{2}$ is impossible by (28) and the second case implies, using (30) and (29), that $n=0$ or $m= \pm 1$.

The following result is an extended paralle1 of Theorem 8.
Theorem 10: Let $b=1$ and $a^{2}+2=p$, where p is a prime. Then, the equation $\overline{U_{m}=2 z^{2}-a, m \equiv 0(2) \text { has }, ~}$
(a) the solutions $m=-2,2$ if a is a perfect square,
(b) only the solution $m=-2$ in all other cases.

Proof:

Case 1. Let $m=4 n-2$. Equation (39) implies that $U_{2 n} V_{2 n-2}=2 z^{2}$. But, by Lemma 3, $\left(U_{2 n}, V_{2 n-2}\right) V_{2}$, where $V_{2}=p$, so that $\left(U_{2 n}, V_{2 n-2}\right)=1$ or p. If $\left(U_{2 n}, V_{2 n-2}\right)=1$, then we must have
$U_{2 n}=2 t^{2}, V_{2 n-2}=r^{2}$ or $U_{2 n}=t^{2}, V_{2 n-2}=2 r^{2}$.
The first case is impossible by (28). The second case has, by (30) and (29), only the solution $n=1$ or $m=2$ if a is a perfect square.

Now, let $\left(U_{2 n}, V_{2 n-2}\right)=p$. We then have to check two possibilities:
$U_{2 n}=p t^{2}, V_{2 n-2}=2 p r^{2}$ or $U_{2 n}=2 p t^{2}, V_{2 n-2}=p r^{2}$.
In the first case we must have, by (9), $n \equiv 1$ (3), say $n=3 \lambda+1$. By (5), we also have $U_{n} V_{n}=p t^{2}$. But $\left(U_{n}, V_{n}\right)=1$; therefore, we have

$$
\begin{equation*}
U_{n}=p W_{1}^{2}, V_{n}=W_{2}^{2}, V_{2 n-2}=2 p r^{2} \tag{52}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{n}=W_{1}^{2}, V_{n}=p W_{2}^{2}, V_{2 n-2}=2 p r^{2} \tag{53}
\end{equation*}
$$

Equation (52) has no solution since, by (28), the only solution of $V_{n}=W_{2}^{2}$ is $n=1$, for which $U_{n}=p W_{1}^{2}$ is impossible. Equation (53) has no solution either since, by (30), the only possible value for n of $U=W_{1}^{2}$ is $n=1$, but then $V_{1}=a=p W_{2}^{2}$, which is impossible.

For the second case we must have, by (9) , $3 \mid n$, say $n=3 \lambda$. By (5), we have $U_{3 \lambda} V_{3 \lambda}=2 p t^{2}$. Since, by (10), $\left(U_{3 \lambda}, V_{3 \lambda}\right)=2$, we must check the following subcases:

$$
\begin{align*}
& U_{3 \lambda}=4 p r_{1}^{2}, \quad, \quad{ }_{3 \lambda}=2 r_{2}^{2}, V_{2 n-2}=p r^{2} ; \tag{54}\\
& U_{3 \lambda}=\left(2 r_{1}\right)^{2}, V_{3 \lambda}=2 p r_{2}^{2}, V_{2 n-2}=p r^{2} ; \tag{55}\\
& U_{3 \lambda}=2 p r_{1}^{2}, V_{3 \lambda}=\left(2 r_{2}\right)^{2}, V_{2 n-2}=p r^{2} ; \tag{56}\\
& U_{3 \lambda}=2 r_{1}^{2}, V_{3 \lambda}=4 p r_{2}^{2}, V_{2 n-2}=p r^{2} . \tag{57}
\end{align*}
$$

By (29), the only possible solutions of (54) are $\lambda=0$ for each d, and $\lambda=$ ± 2 if $d=5$. We know $\lambda=0$ is a solution, since $U_{0}=0=4 p r_{1}^{2}$ with $r_{1}=0$ and $V_{-2}=p r^{2}=V_{2} r^{2}$ with $r= \pm 1$.

Since $F_{ \pm 6}= \pm 8 \neq 4 \cdot 3 \cdot r_{1}^{2}, \lambda= \pm 2$ is not a solution of (54). By (30), the only possible solutions of (55) are $\lambda=0$, and $\lambda=4$ if $d=5$. It is obvious that $\lambda=0$ is not a solution, since $V_{0}=2 \neq 2 \cdot V_{2}^{2}$. Neither is $\lambda=4$ a solution, since $L_{12}=322 \neq 2 \cdot 3 \cdot r_{2}^{2}$. In the same way, we can prove that (56) and (57) have no solutions. The possible values $\lambda= \pm 1$ in (57) do not yield a solution, since $p=a^{2}+2 \nmid \alpha\left(\alpha^{2}+3\right)=V_{ \pm 3}$.

Case 2. Let $m=4 n$. By (37), $U_{2 n-1} V_{2 n+1}=2 z^{2}$. Using Lemma 3 and the assumption, $\left(U_{2 n-1}, V_{2 n+1}\right)=1$ or p.

If $\left(U_{2 n-1}, V_{2 n+1}\right)=1$, we have
$U_{2 n-1}=2 t^{2}, V_{2 n+1}=r^{2}$
or
$U_{2 n-1}=t^{2}, V_{2 n+1}=2 r^{2}$.
By (31) and (28), (58) has no solution. By (29), (59) has no solution.
If $\left(U_{2 n-1}, V_{2 n+1}\right)=p$, we have
$U_{2 n-1}=2 p z_{1}^{2}, V_{2 n+1}=p z_{2}^{2}$
or

$$
\begin{equation*}
U_{2 n-1}=p z_{1}^{2}, \quad V_{2 n+1}=2 p z_{2}^{2} \tag{60}
\end{equation*}
$$

Neither (60) nor (61) has a solution by using a proof similar to that given at the end of Theorem 8.

The following are immediate consequences of the preceding theorems.
Corollary 13: If $d=a^{2}+4, \alpha \equiv 1(2)$, then the equation $x^{2}=4 d z^{4}-4 d z^{2}+\alpha^{2}$ has only the solution $(x, z)=(\pm \alpha, 0)$.

Corollary 14: Let $d=a^{2}+4$ and $a^{2}+2=p$, where p is a prime. Then, the equation $x^{2}=4 d z^{4}-4 a d z^{2}+\left(a^{2}+2\right)^{2}$ has
(a) two solutions, $(x, z)=\left(\pm\left(\alpha^{2}+2\right), 0\right),\left(\pm\left(a^{2}+2\right), \pm r\right)$ if a is a perfect square, $a=r^{2}$
(b) only the one solution $(x, z)=\left(\pm\left(a^{2}+2\right), 0\right)$ in all other cases.

Corollary 15: $\quad F_{m}=2 z^{2}-1$ iff $m= \pm 1, \pm 2$.

5. GENERALIZED LUCAS NUMBERS OF THE FORM $\mu z^{2} \pm v$

Theorem 11: The equation $V_{m}=z^{2}+a, m \equiv 1(2)$, has only the solution $m=1$.

Proof:

Case 1. Let $m=4 n-1$. By (42), $V_{2 n-1} V_{2 n}=z^{2}$. Since $\left(V_{2 n-1}, V_{2 n}\right)=1$, we have $V_{2 n-1}=t^{2}, V_{2 n}=r^{2}$, which is impossible by (28).

Case 2. Let $m=4 n+1$. By (42), $V_{2 n} V_{2 n+1}-2 \alpha=z^{2}$. Hence, using (8) and (42), we have

$$
\left\{V_{n}^{2}-2(-1)^{n}\right\}\left\{V_{n} V_{n+1}-(-1)^{n} a\right\}-2 a=z^{2}
$$

which implies that $V_{n} M_{n}=z^{2}$ with $M_{n}=V_{n}^{2} V_{n+1}-(-1)^{n} a V_{n}-2(-1)^{n} V_{n+1}$. Let p be an odd prime and let $p^{e} \| V_{n}$. Since $\left(V_{n+1}, V_{n}\right)=\cdots=\left(V_{1}, V_{0}\right)=(a, 2)=1$, it follows that $p \nmid M_{n}$. This implies $e \equiv 0(2)$ and therefore $V_{n}=t^{2}$ or $V_{n}=2 t^{2}$. Using (28) and (29), we find that the possible solutions are $m=1,5,13,25$, -23 if $d=5, m=1,13$ if $d=13, m=1,5,25,-23$ if $d=29, m=1,5$ if $a=t^{2}$ and $d \neq 5, m=1$ otherwise. Obviously, $m=1$ is a solution. For $m=5$ and $a=$ t^{2}, we have $\left(a^{2}+2\right)^{2}+a^{2}=r^{2}$, which is impossible because both a and $a^{2}+2$ are odd. By a direct computation of each corresponding V_{m} in all other cases, we see that no other solutions exist. Note that for $d=29$,

$$
V_{25}=766628450142675125 .
$$

Following an argument similar to Theorem 11, we can prove Theorem 12.
Theorem 12: The equation $V_{m}=z^{2}-a, m \equiv 1(2)$ has only the solution $m=-1$.
Corollary 16: If $b=1$, then the diophantine equations

$$
d y^{2}=z^{4}+2 a z^{2}+\alpha^{2}+4 \text { and } d y^{2}=z^{4}-2 \alpha z^{2}+a^{2}+4
$$

have only the solution $(y, z)=(\pm 1,0)$.
The next two theorems are similar to the last two, but m is even.
Theorem 13: Let p be an odd prime. Then, the equation $V_{m}=z^{2}+(p-2), m \equiv$ 0 (2) has
(a) the solution $m=0$ if $p=3$,
(b) the solutions $m= \pm 2, \pm 4$ if $d=5$ and $p=5$,
(c) at most $\prod_{i=1}^{r}\left(s_{i}+1\right)+1$ solutions if

$$
p-4=q_{1}^{s_{1}} \cdot q_{2}^{s_{2}} \cdot \cdots \cdot q_{r}^{s_{n}}
$$

as its unique factorization.

Proof:

Case 1. Let $m=4 n$. By (8), $V_{2 n}^{2}-z^{2}=p$, which implies that
$V_{2 n}= \pm \frac{p+1}{2}$ or $V_{2 n}=\frac{p+1}{2}$ by (19).
If $p=3$, then $V_{2 n}=2$, which implies that $n=0$ or $m=0$ is a solution with $z=0$. If $p=5$, then $V_{2 n}=3$, which can only be true if $n= \pm 1$ and $d=5$ or $m= \pm 4$ and $d=5$. If $p>5$, there exists at most one solution.

Case 2. Let $m=4 n+2$. By (8), $V_{2 n+1}^{2}-z^{2}=p-4$. If $p=3$, then $V_{2 n+1}=0$, which is impossible. If $p=5$, then $V_{2 n+1}= \pm 1$ and the only possibilities for solutions are $n=0$ or -1 and $d=5$ or $m= \pm 2$ and $d=5$. If $p>5$, then

$$
V_{2 n+1}= \pm \frac{d_{1}+d_{2}}{2}, a_{1}>0, d_{2}>0
$$

where $\left(d_{1}, d_{2}\right)$ runs over all the divisors of $p-4$ with $d_{1} d_{2}=p-4$. Since the
number of divisors of $p-4$ is $\prod_{i=1}^{r}\left(s_{i}+1\right)$, the theorem is proved.
In the same way, we can prove
Theorem 14: Let p be an odd prime. Then, the equation $V_{m}=z^{2}-(p-2), m \equiv$ $0(2)$, has
(a) the solutions $m= \pm 2, d=5$, if $p=3$,
(b) no solution if $p=5$,
(c) at most $\left\{\begin{array}{l}\frac{1}{2}\left[\prod_{i=1}^{r}\left(s_{i}+1\right)-1\right]+2 \text { solutions if } p-4 \text { is a perfect square } \\ \frac{1}{2} \prod_{i=1}^{r}\left(s_{i}+1\right)+2 \text { solutions if } p-4 \text { is not a perfect square, }\end{array}\right.$
where $p-4=q_{1}^{s_{1}} q_{2}^{s_{2}} \ldots q_{r}^{s_{r}}$ as its unique factorization.
Corollary 17:
(i) The diophantine equation $z^{4}+2(p-2) z^{2}+p(p-4)=d y^{2}$ has
(a) one solution for each d if $p=3$,
(b) four solutions for $d=5$ if $p=5$,
(c) at most $\prod_{i=1}^{r}\left(s_{i}+1\right)+1$ solutions if $p>5$ and $p-4=q_{1}^{s_{1}} \ldots q_{r}^{s_{n}}$ as its unique factorization.
(ii) The diophantine equation $z^{4}-2(p-2) z^{2}+p(p-4)=d y^{2}$ has
(a) one solution for each d is $p=3$,
(b) no solution for each d if $p=5$,
(c) at most $\left\{\begin{array}{l}\frac{1}{2}\left[\prod_{i=1}^{n}\left(s_{i}+1\right)-1\right]+2 \begin{array}{l}\text { solutions if } p-4 \text { is a } \\ \text { perfect square }\end{array} \\ \frac{1}{2} \prod_{i=1}^{r}\left(s_{i}+1\right)+2 \begin{array}{l}\text { solutions if } p-4 \text { is not a } \\ \text { perfect square, }\end{array}\end{array}\right.$
where $p>5$ and $p-4=q_{1}^{s_{1}} \ldots q_{p}^{s_{r}}$ as its unique factorization.
Corollary 18: The following can be found in [4] and [8]:
$L_{m}=z^{2}+1$ iff $m=0,1$,
$L_{m}=z^{2}-1$ iff $m=-1, \pm 2$.
By an argument similar to Theorems 11 and 12, we can prove
Theorem 15:
(i) The equation $V_{m}=2 z^{2}+\alpha, m \equiv 1(2)$, has only the solution $m=1$.
(ii) The equation $V_{m}=2 z^{2}-a, m \equiv 1(2)$, has
(a) the solutions $m= \pm 1$ is a is a perfect square,
(b) only the solution $m=-1$ in all other cases.

By using the method of Cohn, as before, we can also prove
Theorem 16: $L_{m}=2 z^{2}+1, m \equiv 0(2)$, iff $m= \pm 2$,
$L_{m}=2 z^{2}-1, m \equiv 0(2)$, iff $m= \pm 4$.
Corollary 19: $L_{m}=2 z^{2}+1$ iff $m= \pm 2,1$, $L_{m}=2 z^{2}-1$ iff $m= \pm 1, \pm 4$.

REFERENCES

1. J. A. Antoniadis. "Über die Kennzeichnung zweiklassiger imaginär-quadratischer Zahlkörper durch Lösungen Diophantischer Gleichungen." Journal für die reine und angewandte Math. 339 (1983):27-81.
2. J. H. E. Cohn. "Eight Diophantine Equations." Proc. of the L.M.S. (3) 16 (1966):155-166, Addendum (3) 17 (1967):381.
3. R. Finkelstein. "On Fibonacci Numbers Which Are One More Than a Square." Journal für die reine und angewandte Math. 262-63 (1973):171-178.
4. R. Finkelstein. "On Lucas Numbers Which Are More Than a Square." The Fibonacci Quarterly 13, no. 4 (1975):340-342.
5. R. K. Guy. Unsolved Problems in Number Theory. New York: Springer-Verlag, 1981.
6. W. Ljunggren. "Über die unbestimmte Gleichung $A x^{2}-B y^{4}=C$." Archic for Math. og Naturvidenskab 41, no. 10 (1938), 38 pp.
7. T. Nage11. Introduction to Number Theory. New York: Wiley, 1951.
8. N. Robbins. "Fibonacci and Lucas Numbers of the Forms $w^{2}-1$, $w^{3} \pm 1$. " The Fibonacci Quarterly 19, no. 5 (1981):369-373.
9. H. C. Williams. "On Fibonacci Numbers of the Form $k^{2}+1$." The Fibonacci Quarterly 13, no. 3 (1975):213-214.
