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INTRODUCTION 

In this paper, k, m, and n will represent arbitrary natural numbers; p, q9 P, 
s, primes; and a, h, o> ds natural number exponents. O is the sum-of-divisors 
function; <J*9 the sum-of-unitary divisors function; and T, the count-of-prime-
factors function. 

Definition 1 [6]: A number m is said to be n-hyperperfect, n-HP, if it satis-
fies 

m = 1 + n[o(m) - m - 1]. (1) 

Defini t ion 2 [2]: A number m is said to be n-unitary hyperperfect, n-UHP, if it 
satisfies 

m = 1 + n[o*(rn) - m - 1]. (2) 

For n = 1, the definitions reduce to those of the usual perfect and unitary 
perfect numbers. The two definitions agree on square-free numbers. To speak 
of both concepts simultaneously, we subsume equations (1) and (2) into 

m = 1 + n[I(m) - m - 1] (3) 

and speak of n-(unitary) hyperperfect numbers, n-(U)HP. 

1. PARITY 

Theorem 1: Let m be n-(U)HP. Then: 

(a) (m, ri) = 1; 
(b) If m is even, n is odd; 
(c) If n is even, m is odd; 
(d) (772, E(m) - 777 - 1) = 1; 
(e) (m, S(777) - 1) = 1; 
(f) T(777) > I. 

Proof: (a-e) Follow directly from (3). 

(f) By contradiction. If 777 = pa, a > 1, then 

p (777, Urn) - 1) 

which contradicts (e). s 
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The possibility that both m and n are odd is not addressed in this theorem. 
The table of hyperperfect numbers in [3] includes odd m for odd n. For exam-
ple, 325 is 3-HP. In the unitary case, we have a complete result. 

Theorem 2: If m is n-UHP, then not both m and n are odd. 

Proof: By contradiction. Assume m=2s+l9n=2t+l. Equation (2) be-
comes 

2s + 1 = 1 + (2t + l)[cr*O0 - (2s + 1) - 1]. 

Expand and regroup. 

4s + 2 = (2t + l)a*(m) - 4ts - 4£. 

Reduce modulo 4, remembering that 2t + 1 is odd. 

a* (777) = 2 mod 4. (4) 

For (4) to be true, T(/TZ) = 1. This contradicts Theorem 1(f). • 

Theorems 1 and 2 say that if m is n-UHP, not only are m and n relatively 
prime, they must be of opposite parity. The case in which n = 1 reduces to an 
old result. 

Corol1ary 1 [7]: There are no odd unitary perfect numbers. 

2. STRUCTURE THEOREMS 

Equation (3) can also be written in the form 

(n + 1)777 = nZ(m) - (n - 1) . (5) 

Theorem 3- If m is n-HP, n odd, then 77? has as a component an odd prime to an 
odd power. 

Proof: Let m = 2amr, (2, 7?7') = 1. Equation (5) becomes 

(n + l)2a777' = no(2a)o(mr) - {n - 1). 

The first and third terms are even since n is odd; n and o(2a) are odd. There-
fore o(mf) is even. This happens only if an odd prime factor of m occurs to an 
odd power, m 

This argument yields no information in the unitary case, because o*(mr) is 
even. Note that the argument does not depend on a; it holds for a = 0. 

Theorem h: Let 7?7 be n-UHP, 777 = pamf, ( p , 777') = 1. Then 

(pa - n) (mr - n) > n1 + 1. 

Proof: Equat ion (5) becomes 

(n + 1)772 = n(pa + l)o*(mr) - (n - 1) = npv-o^tjn1) + no*(mr) - (n - 1) 

(n + l ) p a m f - npao*(rnr) = no*(mr) - (n - 1) 

pa[(n + D m ' - na*(777')] = no*<m') - (n - 1) 

na = no*(mr) - (n - 1) „ v 
p (n + D777' - na* (777 0 w 
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o*(mf) ^ mf + 1 implies 

in + l)mf - no*(mf) < in + l)mf - n{mf + 1); (7) 

and 

no*(mr) - (n - 1) > n(mf + 1) = (n - 1) = nmf + 1 = n2 + 1 
(n + l)w' - no*(mF) "" (n + l)wf - n(?7?f + 1 ) mf - n mr - n* 

Thus, 

r mT ~ n or 

(pa - n) (mf - n) > n2 + 1. • 

Corol l a ry 2: Let TTZ be n-UHP, m = pa7??f, (p , wf) = 1. Then 

n + 1 . a* Q Q 
n /??' 

Proof: In (6), the numerator is positive; hence, so is the denominator: 

(n + l)mf - no*{mf) > 0. 

The inequality follows immediately. • 

Corollary 3- Let m be n-UHP, m = pamr
s (p, mf) = 1. Then 

n + 1 > mf + 1 
n mr 

Proof: o*(mr) > m' + 1. Alternatively, the right side of (7) is positive, 
as the left side is. m 

Corollary 4: Let m be n-UHP, m = paqb„ Then 

(pa - n)(qb - n) = n2 + 1. 

Proof: In Theorem 4, mf = gfc. o*(qb) = qb + 1. Equation (7) is an'equal-
ity. The result follows, a 

Corollary $: For given n, there are finitely many m of the form m = p ^ ^ which 
are n-UHP. 

Proof: From Corollary 4, 

, n2 + 1 , , , n2 + 1 . . 
pa = n -I and q& = n + . 

qb _ n pa - n 
There are finitely many solutions for pa

9 qb a m 

Corollary 6: There is exactly one unitary perfect number with two distinct 
prime divosors. 

Proof: in Corollary 5, n = 1, n2 + 1 = 2. There is only one solution for 
P S qb; namely, 2, 3. m = 6. m 

Corol lary 7: Let m be n-UHP, pa\\m. Then pa > n. 
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Proof: This is the penultimate inequality in the proof of Theorem 4. • 

The import of Corollary 7 is that, if m is n-UHP, then all unitary divisors 
of m5 except 1, exceed n. In the nonunitary case, every divisor of m, except 
1, exceeds n ([6], Theorem 1). Minoli and Bear ([6], Theorem 3) demonstrate 
bounds on the prime factors of an n-HP number of the form m = pq. These bounds 
can be proved for the unitary case with some generalization. 

Corollary 8: Let m be n-UHP, m = paqb, pa < qb. Then: 

(a) If n > 1, n < pa < In < qb < n2 + n + 1; 

(b) If n = 1, n < pa < In < qb < n1 + n + 1. 
Further, 

(c) For n = 1, 2, there are unique solutions. 

Proof: The first inequality is Corollary 7. The last inequality arises 
from Corollary 4. 

n1 + 1 = (pa - n){qb - n) > qb - n; 

thus, 

qb < n
2 + n + 1. 

For the second inequality, rewrite equation (2) as 

paqb = 1 + npa + wq& < 1 + 2nqb 
paqb < 2nqb 

pa < 2n. 

If p = 2, by Theorem 1, n is odd. Thus, equality is possible only for n = I, 
pa = 2. Equation (2) also yields 

paqb > 2npa 

qb > 2n. 
Again, if q - 2, n is odd. Equality is possible only for n = 1, qb = 2. Then 
T(rri) = 1, which contradicts Theorem 1 and the initial assumption. This com-
pletes the proof of the inequalities. For n = 1, they reduce to 

1 < pa < 2 < qb < 3. 

The only solution is pa = 2; qb = 33 m = 6. For n = 2, 

2 < pa < 4 < <?* < 7; 

thus, pa = 3. By Corollary 4, qb = 7. • 

Theorem 5: If w is n-(U)HP, then 

n > ft? . / re \/777 - 1 \ 
n + 1 "" E(m) \ n + 1A w / 5 

with equality on the left if and only if n = 1. 

Proof: On division by (n + l)Z(w), equation (5) becomes 

m _ n n - 1 
E(/7?) n + 1 (n + l)E(w) # (8) 

1985] 273 



HYPERPERFECT AND UNITARY HYPERPERFECT NUMBERS 

The left inequality is immediate. 

As Z(m) > m, 

n - 1 ^ n - 1 , n - 1 ^ n - 1 
5̂ . A n n —• -s? — 

(n + l)E(m) in + l)m (n + l)E(m) (n + l)m" 
Equation (8) yields 

m > n _ n - 1 _ nm - n + 1 . nm - n = / n \/m - 1\ 
E(/7z) ̂  n + 1 (n + l)m ~ (n + l)m (n + l)m U + 1A m ) ' 

which is the inequality on the right, m 

Results on mod 3 properties have appeared before. In particular, Hagis [2] 
proved the following. 

Theorem 6: Let m be n-UHP, then: 

(a) If m f 0 mod 3, then m E 1 mod 3; 
(b) If n = 0 mod 3, then m = 1 mod 3; 
(c) If n = 1 mod 3, then o*(m) = 2m mod 3; 
(d) If n = -1 mod 3, then a* (??0 = 2 mod 3. 

Results (b), (c) s and (d) follow immediately from equation (3) and so are 
valid for the (ordinary) hyperperfect case also. 

3, UNITARY HYPERPERFECT NUMBERS 

The set of unitary hyperperfect numbers has nonempty intersections with the set 
of (ordinary) hyperperfect numbers and with the set of unitary perfects. In 
the first case, the intersection is the set of square-free hyperperfect num-
bers. In the second, it is the set (see [7], [11]) of 1-unitary hyperperfect 
numbers. For square-free hyperperfect numbers, see [4], [5], [6], [8], [9], 
and [10]. 

Hagis [2] ran a computer search for unitary hyperperfect numbers through 
106. Buell [1] found 146 unitary hyperperfect numbers less than 10 . 
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