A NOTE ON THE SUMS OF FIBONACCI AND LUCAS POLYNOMIALS

BLAGOJ S. POPOV

University "Kiril i Metodij," Skopje, Yugoslavia
(Submitted September 1983)

Recently, G. E. Bergum and V. E. Hoggatt, Jr. [1] have shown that

$$
\sum_{n=0}^{\infty} F_{2^{n} k}^{-1}(x)=\frac{1}{F_{k}(x)}+\left\{\begin{array}{l}
\left(\alpha^{2}(x)+1\right) / \alpha(x)\left(\alpha^{2 k}(x)-1\right), x>0 \tag{1}\\
\left(\beta^{2}(x)+1\right) / \beta(x)\left(\beta^{2 k}(x)-1\right), x<0
\end{array}\right.
$$

where $\left\{F_{k}(x)\right\}_{k=1}^{\infty}$ is the sequence of Fibonacci polynomials, defined recursively by
$F_{1}(x)=1, F_{2}(x)=x, F_{k+2}(x)=x F_{k+1}(x)+F_{k}(x), k \geqslant 1$,
and $\alpha(x)=\left(x+\sqrt{x^{2}+4}\right) / 2, \beta(x)=\left(x-\sqrt{x^{2}+4}\right) / 2$. Evidently, for $x=1$ it is the known formula for the Fibonacci numbers [2].

In this paper we give, by an elementary method, an extension of the result (1). Namely, we show that

$$
\sum_{n=0}^{\infty}(-1)^{r^{n k}} \frac{F_{(r-1) r^{n} k}(x)}{F_{r^{n} k}(x) F_{r^{n+1} k}(x)}=\left\{\begin{array}{l}
\beta^{k}(x) / F_{k}(x), x>0, \tag{2}\\
\alpha^{k}(x) / F_{k}(x), x<0 .
\end{array}\right.
$$

Obviously, for $r=2$, we obtain (1) from (2).
Furthermore, we find that

$$
\sum_{n=0}^{\infty} \frac{2^{n} \beta^{2^{n} k}(x)}{L_{2^{n} k}(x)}= \begin{cases}\frac{\alpha(x)}{\alpha^{2}(x)+1} \frac{\beta^{k}(x)}{F_{k}(x)}, & x>0 \tag{3}\\ \frac{\alpha(x)}{\alpha^{2}(x)+1} \frac{\alpha^{k}(x)}{F_{k}(x)}, & x<0\end{cases}
$$

where $L_{k}(k)$ is the Lucas polynomial defined by $L_{k}(x)=F_{k+1}(x)+F_{k-1}(x)$.
From the identity

$$
\sum_{r=0}^{n} \frac{x^{p^{r}}-x^{p^{r+1}}}{\left(1-x^{p^{r}}\right)\left(1-x^{p^{r+1}}\right)}=\frac{x-x^{p^{n+1}}}{(1-x)\left(1-x^{p^{n+1}}\right)}
$$

if we put $x=\beta^{k}(x) / \alpha^{k}(x)$ we obtain

$$
\begin{equation*}
\sum_{r=0}^{m}(-1)^{n^{r} k} \frac{F_{(n-1) n^{r} k}(x)}{F_{n^{r} k}(x) F_{n^{r+1} k}(x)}=(-1)^{k} \frac{\left.F_{\left(n^{m+1}\right.}-1\right) k}{F_{k}(x) F_{n^{m+1} k}(x)} . \tag{4}
\end{equation*}
$$

Using the facts that $|\beta(x) / \alpha(x)|<1$ if $x>0$ and that $\beta(x) / \alpha(x)<-1$ if $x<0$, from (4), when $m \rightarrow \infty$, we have (2).

Similarly, from

$$
\sum_{r=0}^{\infty} \frac{2^{r} x^{2^{r}}}{1+x^{2^{r}}}=\frac{x}{1-x},
$$

if we put $x=\beta^{k}(x) / \alpha^{k}(x)$, we find (3).
REFERENCES

1. G.E. Bergum \& V. E. Hoggatt, Jr. "Infinite Series with Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 17, no. 2 (1979):147-151.
2. E. Lucas. Theorie des nombres. Paris, 1890.
