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This paper describes how a subclass of the rational knots* may be constructed 
sequentially., the knots in the sequence having 19 29 ..., i s ... crossings. 
For these knots, the values of a certain knot invariant are Fibonacci numbers, 
the ith knot in the sequence having invariant number Fi . 

The knot invariant has a wide number of interpretations and properties, 
and some of these will be outlined9 particularly in relation to knots in the 
constructed class, 

The class will be called the Fibonacci knot-class. A generalization of 
this class will be introduced and briefly discussed. 

1. THE RATIONAL KNOTS 

J. H. Conway [2] defines the notion of "integer tangle/' and gives rules for 
combining integer tangles to form a large class of alternating knots which he 
calls rational knots. He develops operations by which all knots on a given 
number of crossings may be constructed and tested for equivalences. 

Conway's Notation and Construction of the Rational Knots 

Only an outline of the methods used9 proceeding largely by examples, can 
be given. The following diagrams show the first few integer tangles with their 
designations. 

X >X >x>< 
1 2 3 

Integer tangles 1, 2? and 3 

Integer tangles are combined to form rational tangles, as the following 
examples show: 

Note that to form the tangle abed (where a9 b> cs 
d represent integer tangles), first a is reflected 
in a leading diagonal then joined to b. Then the 
tangle ab is reflected and joined to c. Finally9 
abc is reflected and joined to d- The manner of 
joining two tangles is evident from the examples. 

21 

212 

A t a n g l e i s t u r n e d i n t o a k n o t by j o i n i n g t h e two 
y r — \ ^ u p p e r s t r i n g s ( l o o s e e n d s ) s and t h e n j o i n i n g t h e 

2123 C / / ^ ^ - ^ C t w o -*-o w e r strings * 

As in [2] , we use "knot" as an inclusive term for "]l-linkf" u ^ 1. 
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In [5] a table of diagrams of prime knots and links is given, showing the 
knots on n crossings, for n = 2, 3, ..., 10. Conway, in [2], classifies the 
knots and links through to n - 11 crossings. 

2. THE FIBONACCI KNOT-CLASS 

We now define what we have called the Fibonacci knot-class to be the sequence 
of rational knots which are* in Conwayfs constructional notation, 1, 11, 111, 
1111, .... There is thus one knot in the class for each value of n-crossings; 
we give diagrams for the first six in the sequence before describing the prop-
erties that relate them to the Fibonacci numbers. 

The Fibonacci knots to n = 6 

In the sequence, each knot corresponds to its Fibonacci number through a cer-
tain knot-invariant to be described. Then when F± is odd the knot is a 1-link, 
and when Fi is even the knot is a 2-link (where {Fi } is the sequence 1, 2, 3, 
5, 8, . . . ) . 

3. PROPERTIES OF THE FIBONACCI KNOT-CLASS 

A Vertex-Deletion Operation; Production of "Twins" 

If a crossing of a knot diagram is "cut-out" or "deleted," the four cut-
ends may be joined again in two ways that lead to a pair of alternating knots, 
each having one fewer crossing than the original knot. We may call the origi-
nal knot K9 and the associated pair of knots which are obtainable from the 
vertex-deletion KT and Krr; we may speak of K as the parent knot, and call (Kf, 
K") a pair of twins. 

Let us write, formally, that K = Kr ® Klf whenever (K', Kn) are twins from 
parent knot K. 

Twins from the Fibonacci Knots 

Consider, for example, the Fibonacci knot F5 E 11111. By its construction, 
the last 1 corresponds to the crossing on the far right of its diagram. We 
demonstrate that deletion of this vertex leads to the twins (F^9 ^13)» Thus: 
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$ © 

Cut out vertex Join a to d 
and b to c 

Join a to b 
and a to d 

The knot on the far right is immediately seen to be equivalent to Fs once the 
loop (shown shaded) is removed by twisting it once, out of the plane and back, 
through 180°  clockwise. 

To transform the first right-hand knot to the one shown in Section 2 re-
quires two operationsi (1) turn the entire knot over in the plane9 rotating it 
about an axis in the plane that runs from NW to SE; (2) rotate the entire knot 
through 180°  in the plane (about an axis perpendicular to the plane). 

Similarlys we can show that* if we delete its last vertex, F6 has twins 
(F5$ F^) s F7 has twins (F&, F5)9 and so on. Using the symbol © as described 
above, we can write, formally, 

Fn + 2 = Fn + 1 ® Fn> U " ls 2 * ee*5 

which is the recurrence relation for the Fibonacci series. 

The nTree Number11 Knot Invariant 

The edges of an alternating knot-graph may be given orientations in such 
a way that the arrows alternate in direction as the knot is toured from edge 
to edge. We call this a balanced alternating orientation. 

For a knot-graph with a balanced alternating orientation, we may count the 
number of directed spanning trees that emanate from any given vertex* We can 
show that this number is independent of the vertex chosen as root and* further, 
that it is a knot-invariant for alternating knots. The first proof of imparl-
ance of this tree number (T) may be found in [3]. 

A^^-^^" \ J T - 5 (whichever vertex is taken as root; 
\ r ^/\ an<^ whichever alternating diagram is used 
^^ — - ^ ' to represent the knot). 

Example: Knot Fh , with balanced alternating orientation 

Computation of x for the Rational Knots 

In [6] we derive the following recurrence equations for 

T(m1m2 ... ma)9 

the tree number of the rational knot m1m2 ... md. 
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x(^1m2) = m2ml + 1 

T(m1m2 ... mQ) = mc • T(m1m2 ... wc_1) + T(m1m2 ... mc_2). 

The tree numbers of the Fibonacci knot-class are given by setting 7/?̂- = 1, 
i = 1, ...9 <?. This gives 

X ^ ) = 1, T(F2) = 29 .... T(^) = T(^_x) + T(F^_2). 

Therefore, in this knot-class the tree numbers follow the Fibonacci sequence. 
Consider the rational knot mm ... mc, and the associated continued frac-

tion {terminated) (C.F.): 

C.F. (77z,7770 ... m„) = mc + + + • • • + — . 
1 2 ° ° mc-l ma-2 mi 

In view of the recurrence equations, the following is true: 

n(jn1m2 . . . mc) 
C . F . (m_77z0 . . . m„) - —, r- . 

1 2 c T(m1m2 . . . mo_±) 

This gives the following formula for the t ree number of the cth Fibonacci 
knot: 

T(FC) = £ C . F . ( ^ ) . 
i = l 

It should be noted here that Conway derives some interesting topological 
properties relating to the continued fraction of a rational knot in [2]. 

Other Interpretations of the Number x 

There are a number of knot invariants which have the same value as T for 
any given knot. We list three here; a fuller discussion of them can be found 
in [6]. 

Entities equal in value to x 

(1) The torsion number of the two-fold branched cyclic covering space of 
the knot [1]. 

(2) The number of Euler circuits on the knot-digraph [4]. 

(3) The quantity |A(-1)|9 where Afo) is the Alexander polynomial of the 
knot [5]. 

Thus, for the Fibonacci knots, all of these invariant values follow the 
Fibonacci sequence. 

On Parity of Tree Numbers 

In [6], we show that x is odd if and only if the knot-graph is a 1-link 
(i.e., one string). In the Fibonacci knot sequence, then, the knots F19 F3, 
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Fh, F6s F?9 ... are 1-links; it is easy to show that every third knot* with even 
Ts isa 2-link. That is F0, F., FQ, . .. are 2-links. 

On Amphichei ralIty 

A knot is amphicheiral if it can be transformed into its mirror image by 
a bi-continuous transformation (that is, without cutting and rejoining the 
string). 

_In Conway's notation9 the mirror image of 11 ... 1 is II ... I; the sym-
bol 1 denotes a crossing V^ . 

Proposition: Fc is amphicheiral for c = 1, 2, 4, 6, (c even after 1), 

Proof: For c = 1 and 2, it is easy to note how the transformation can be car-
ried out. For general c9 the necessary transformations to carry the knot into 
its mirror image are as follows: 

lift 
dotted 
string 
over 

-X 

rotate 
180°  
in the 
plane 

Knot: 111111...11 Knot: 11...111111 

It is well known that knots with an odd number of crossings cannot be am-
phicheiral; hence, Fi , where i = 3, 5, ... are not amphicheiral. 

4. GENERALIZATIONS 

An obvious generalization of the above work would be to study the knot-classes 
{FW}S where 

{F^} E {Fi} is the Fibonacci class, 

{F|2)} is the class of rational knots 2, 22, 222, 2222, ..., 

{Fl3)} is the class 3, 33, 333, 3333, . .., 

etc. 

Knots with i - 2, 4, ... (even) in each sequence are amphicheiral. 
The tree numbers of knots in these classes satisfy the equations of Sec-

tion 3. For m= 1, they are the Fibonacci numbers; for m = 29 the Pell numbers. 
Doubtless the properties of these numbers, which form interesting two-way 

sequences, are well known. 
Any rational knot may be represented as a formal sum of knots of type FJ , 

making use of the vertex deletion operation described in Section 3. Such 
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representations are not in general unique (that is* a given knot may have more 
than one representation), but it is conjectured that any representation is an 
invariant of that knot* For example* the knot (32) shown below may be repre-
sented in the following ways, by various vertex deletions: 

Z=^> knot (31) © F3 =$> F3 ® Fx ® F3 => 2F3 ® Fx 

also 
— • > F ® F„ 

^ % 2 

Knot (32) 

Note that to each representation there corresponds a linear decomposition of 
the knot's tree number into Fibonacci numbers; e.g., for the knot (32) we have 
T = 7, with the corresponding decompositions 5 + 2 and 2 x 3 + 1 . 

It would be exciting if a study of number sequences associated with knot-
classes were to lead to methods for counting more general classes of knots* 
There are virtually no results in this area, to my knowledge. 
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