HIGHER-ORDER FIBONACCI SEQUENCES MODULO M

DEREK K. CHANG
California State University, Los Angeles, CA 90032
(Submitted July 1984)

Let $\left\{U_{n}, n \geqslant 0\right\}$ be the ordinary Fibonacci sequence defined by

$$
U_{0}=0, U_{1}=1, U_{n}=U_{n-1}+U_{n-2}, \text { for } n \geqslant 2 .
$$

For any integer $k \geqslant 2$, let $\left\{V_{k}(n), n \geqslant-k+2\right\}$ be the $k^{\text {th }}$-order Fibonacci sequence defined by

$$
\begin{aligned}
& V_{k}(j)=0, \text { for }-k+2 \leqslant j \leqslant 0, \quad V_{k}(1)=1, \\
\text { and } \quad & V_{k}(n)=V_{k}(n-1)+V_{k}(n-2)+\cdots+V_{k}(n-k), \text { for } n \geqslant 2 .
\end{aligned}
$$

It is well known that, for any integer $m \geqslant 2$, the sequence $U_{n}\left[=V_{2}(n)\right] \bmod m$ is periodic, and it is easy to see that this also holds for any sequence $V_{k}(n)$ mod m with $k \geqslant 3$. For any $m \geqslant 2$, let $p(k, m)$ denote the length of the period of the sequence $V_{k}(n) \bmod m$. The proof of the next result is almost identical to that in [3] for the ordinary Fibonacci sequence $V_{2}(n)$, thus is omitted here.

Theorem 1: The sequence $V_{k}(n)$ mod m is simply periodic, i.e., it is periodic and it repeats by returning to its starting values. If m has the prime factorization $m=\pi q_{i}^{s_{i}}$, then $p(k, m)=1 \mathrm{~cm}\left[p\left(k, q_{i}^{s_{i}}\right)\right]$, the least common multiple of the $p\left(k, q_{i}^{s_{i}}\right)$.

In order to prove Theorem 2, we first state Lemma 1, the proof of which is quite simple and, therefore, will be omitted here.

Lemma 1: Let $\left\{W_{i}(n), n \geqslant 0\right\}, i=1,2,3$, be three sequences such that for each $i, W_{i}(n)=W_{i}(n-1)+\cdots+W_{i}(n-k)$ for all $n \geqslant k$. If the equality $W_{3}(n)=$ $W_{1}(n)+W_{2}(n)$ holds for $0 \leqslant n \leqslant k-1$, it also holds for all $n \geqslant k$.

The following result extends the corresponding result [3] for the sequence $V_{2}(n)$ to any sequence $V_{k}(n)$ with $k \geqslant 2$. Our proof is quite different from that in [3], and we do not have a general formula for $V_{k}(n)$.

Theorem 2: Let q be any prime number. If $p\left(k, q^{2}\right) \neq p(k, q)$, then

$$
\begin{equation*}
p\left(k, q^{e}\right)=q^{e-1} p(k, q) \tag{1}
\end{equation*}
$$

for any integer $e \geqslant 2$.
Proof: Let $r=p(k, q)$. For the sake of simpler notation, we shall prove (1) only for $e=2$. The same proof stands, with obvious modifications, for $e>2$. Define the k-tuple

$$
T_{0}=\left(V_{k}(-k+2), \ldots, V_{k}(1)\right)=(0, \ldots, 0,1),
$$

and

$$
\begin{aligned}
T_{1} & =\left(V_{k}(-k+2+r), \ldots, V_{k}(1+r)\right)=(0, \ldots, 0,1) \quad \bmod q \\
& =\left(q s_{1}, \ldots, q s_{k-1}, q s_{k}+1\right) \quad \bmod q^{2}
\end{aligned}
$$

where $0 \leqslant s_{j}<q$ for $1 \leqslant j \leqslant k$, and $s_{1}+\cdots+s_{k} \geqslant 1$. The k-tuple T_{1} is obtained by moving $T_{0} r$ units to the right.
T_{1} can be decomposed as follows:

$$
\begin{aligned}
T_{1}= & q s_{1}\left(1,1,2, \ldots, 2^{k-2}\right)+q\left(s_{2}-s_{1}\right)\left(0,1,1, \ldots, 2^{k-3}\right) \\
& +q\left(s_{3}-s_{2}-s_{1}\right)\left(0,0,1, \ldots, 2^{k-4}\right)+\ldots \\
& +\left[q\left(s_{k}-s_{k-1}-\cdots-s_{1}\right)+1\right](0,0, \ldots, 0,1) \bmod q^{2} .
\end{aligned}
$$

Applying Lemma 1 , one can obtain the k-tuple T_{2} by moving $T_{1} r$ units to the right.

$$
\begin{aligned}
T_{2}= & {\left[q\left(s_{k}-s_{k-1}-\ldots-s_{1}\right)+1\right]\left(q s_{1}, q s_{2}, q s_{3}, \ldots, q s_{k-1}, q s_{k}+1\right)+\cdots } \\
& +q\left(s_{2}-s_{1}\right)\left(q s_{k-1}, q s_{k}+1, q\left(s_{k}+s_{k-1}+s_{k-2}\right)+1, \ldots, q(\ldots)+2^{k-3}\right) \\
& +q s_{1}\left(q s_{k}+1, q\left(s_{k}+s_{k-1}+s_{k-2}\right)+1, \ldots, q(\ldots)+2^{k-2}\right) \bmod q^{2} \\
= & \left(2 q s_{1}, 2 q s_{2}, \ldots, 2 q s_{k-1}, 2 q s_{k}+1\right) \bmod q^{2} .
\end{aligned}
$$

Similarly, one has

$$
T_{j}=\left(j q s_{1}, j q s_{2}, \ldots, j q s_{k-1}, j q s_{k}+1\right) \bmod q^{2}
$$

for $2 \leqslant j \leqslant q$. Since q is a prime number, $T_{j} \neq T_{0}$ for $1 \leqslant j \leqslant q-1$, and since $T_{q}=T_{0} \bmod q^{2}$, we have $p\left(k, q^{2}\right)=q r=q p(k, q)$. This completes the proof.

As a final remark, we note that some simple facts about higher-order Fibonacci sequences can be easily observed. For example, many moduli m have the property that the sequence $V_{k}(n)$ mod m contains a complete system of residue modulo m, while $m=8$ and $m=9$ are the smallest moduli which do not have this property in the case $k=3$, and they are said to be defective [2]. For $m=2$ and $m=11$, the sequence $V_{3}(n)$ mod m is uniformly distributed. (See [1] for a definition.) It is interesting to extend the results for ordinary Fibonacci sequences to those of higher order.

REFERENCES

1. L. Kuipers \& J. S'. Shiue. "A Distribution Property of the Sequence of Fibonacci Numbers." The Fibonacci Quarterly 10 (1972):375-376, 392.
2. A. P. Shah. "Fibonacci Sequence Modulo m." The Fibonacci Quarterly 6 (1968):139-141.
3. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monthly 67 (1960): 525-532.
