ON FIBONACCI BINARY SEQUENCES

DEREK K. CHANG
California State University, Los Angeles, CA 90032
(Submitted July 1984)

A Fibonacci binary sequence of degree k is defined as a $\{0,1\}$-sequence such that no $k+11$'s are consecutive. For $k=1$, we have ordinary Fibonacci sequences [2]. Let $G(k, n)$ denote the number of Fibonacci binary sequences of degree k and length n. As was given in [2], it can be easily verified that for $k=1$, we have $G(1,1)=2=F_{2}, G(1,2)=3=F_{3}$, and $G(1, n)=G(1, n-1)+$ $G(1, n-2)=F_{n+1}$ for $n \geqslant 3$, where F_{n} is the nth Fibonacci number. In general, we have

$$
\begin{array}{ll}
G(k, n)=2^{n} & \text { for } 1 \leqslant n \leqslant k \\
G(k, n)=\sum_{j=1}^{k+1} G(k, n-j) & \text { for } n \geqslant k+1 \tag{1b}
\end{array}
$$

Thus, for any $k \geqslant 1$, the sequence $\left\{F_{k, n}=G(k, n-1), n \geqslant 0\right\}$ is the $k^{\text {th }}$-order Fibonacci sequence, where we set $G(k,-1)=G(k, 0)=1$ for convenience.

Let $W(k, n)$ denote the total number of 1 's in all binary sequences of degree k and length n. Then,

$$
\begin{array}{ll}
W(k, n)=n 2^{n-1} & \text { for } 0 \leqslant n \leqslant k \\
W(k, n)=\sum_{j=0}^{k}[W(k, n-j-1)+j G(k, n-j-1)] \text { for } n \geqslant k+1
\end{array}
$$

The ratio $q(k, n)=W(k, n) / n G(k, n)$ gives the proportion of 1 's in all the binary sequences of degree k and length n. It was proved in [2] that the limit

$$
q(k)=\lim _{n \rightarrow \infty} q(k, n)
$$

which is the asymptotic proportion of 1 's in Fibonacci binary sequences of degree k, exists for $k=1$, and actually the limit is $q(1)=(5-\sqrt{5}) / 10$. It is interesting to extend this result and solve the problem for all integers $k \geqslant 1$.

Let $\{A(n), n \geqslant-(k+1)\}$ be a sequence of numbers with $A(j)=0$ for $-(k+1) \leqslant j \leqslant-1$. If we define a sequence

$$
B(n)=A(n)-A(n-1)-\cdots-A(n-k-1) \text { for } n \geqslant 0
$$

similar to the result in the case $k=1$, we have the inverse relation

$$
\begin{equation*}
A(n)=\sum_{j=0}^{k} G(k, j-1) B(n-j) \quad \text { for } n \geqslant 0 \tag{3}
\end{equation*}
$$

where the sequence $\{G(k, n), n \geqslant-1\}$ is defined above. From (2), we obtain

$$
\sum_{m=0}^{k} m G(k, n-m-1)=W(k, n)-\sum_{j=0}^{k} W(k, n-j-1) \quad \text { for } n \geqslant k+1
$$

The inverse relation (3) then implies that

$$
\begin{equation*}
W(k, n)=\sum_{j=0}^{n}\left(G(k, j-1)\left[\sum_{m=0}^{k} m G(k, n-j-m-1)\right]\right) \text { for } n \geqslant k+1, \tag{4}
\end{equation*}
$$

where we set $G(k, n)=0$ for $n \leqslant-2$ for convenience.
The characteristic equation for the recursion (1) is

$$
\begin{equation*}
h(x)=x^{k+1}-x^{k}-\cdots-x-1=0 . \tag{5}
\end{equation*}
$$

Let r_{1}, \ldots, r_{k+1} be its solution. We have the expression

$$
\begin{equation*}
G(k, n)=\sum_{j=1}^{k+1} c_{j} r_{j}^{n}, \text { for } n \geqslant 0, \tag{6}
\end{equation*}
$$

where c_{j} are constants [1]. It is known that (5) has exactly one solution, say r_{1}, whose norm is not less than 1 [3]. Using Cramer's rule, we obtain an explicit form for c_{1} from (6):

$$
\begin{aligned}
c_{1} & =\frac{\left(2-r_{2}\right)\left(2-r_{3}\right) \ldots\left(2-r_{k+1}\right)\left(r_{2}-r_{3}\right) \ldots\left(r_{k}-r_{k+1}\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right) \ldots\left(r_{1}-r_{k+1}\right)\left(r_{2}-r_{3}\right) \cdots\left(r_{k}-r_{k+1}\right)} \\
& =\frac{\left(2-r_{2}\right) \cdots\left(2-r_{k+1}\right)}{\left(r_{1}-r_{2}\right) \ldots\left(r_{1}-r_{k+1}\right)}=\frac{1}{\left(2-r_{1}\right) h^{\prime}\left(r_{1}\right)} .
\end{aligned}
$$

From the equality (4), we get

$$
W(k, n)=\sum_{j=0}^{n}\left[\left(\sum_{\ell=1}^{k+1} c_{\ell} r_{\ell}^{j-1}\right)\left(\sum_{m=1}^{k} m\left(\sum_{p=1}^{k+1} c_{p} r_{p}^{n-j-m-1}\right)\right)\right] .
$$

Since $\left|r_{\ell}\right|<1$ for $2 \leqslant \ell \leqslant n+1$ and $G(k, n)=0\left(r_{1}^{n}\right)$, we have

$$
\begin{aligned}
& \sum_{j=0}^{n} c_{\ell} r_{\ell}^{j-1} m c_{p} r_{p}^{n-j-m-1} \\
& =\left\{\begin{array}{l}
m c_{\ell} c_{p} r_{\ell}^{-1} r_{p}^{-m-1}\left(r_{p}^{n+1}-r_{\ell}^{n+1}\right)\left(r_{p}-r_{\ell}\right)^{-1}=o(n G(k, n)) \text { for } r_{p} \neq r_{\ell} \\
n m c_{\ell} c_{p} r_{\ell}^{n-m-2}=o(n G(k, n)) \text { for } r_{\ell}=r_{p} \neq r_{1} .
\end{array}\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
q(k) & =\lim _{n \rightarrow \infty} \frac{W(k, n)}{n G(k, n)}=\lim _{n \rightarrow \infty} \sum_{j=0}^{n} c_{1} r_{1}^{j-1}\left(\sum_{m=1}^{k} m c_{1} r_{1}^{n-j-m-1}\right) / n c_{1} r_{1}^{n} \\
& =c_{1} \sum_{m=1}^{k} m r_{1}^{-m-2}
\end{aligned}
$$

We have established the rollowing result.
Theorem: Let r be the solution of (5) in the interval (1, 2). Then

$$
q(k)=\left(\sum_{j=1}^{k} j r^{-j-2}\right) /\left[(2-r)\left((k+1) r^{k}-\sum_{j=1}^{k} j r^{j-1}\right)\right]
$$

Finally, three numerical examples are presented below.

$$
\begin{aligned}
& \text { For } k=2, r=1.83929, q(2)=0.38158 . \\
& \text { For } k=3, r=1.92756, q(3)=0.43366 . \\
& \text { For } k=4, r=1.96595, q(4)=0.46207 .
\end{aligned}
$$

REFERENCES

1. R. A. Brualdi. Introductory Combinatorics. New York: North-Holland, 1977.
2. P. H. St. John. "On the Asymptotic Proportions of Zeros and Ones in Fibonacci Sequences." The Fibonacci Quarterly 22 (1984):144-145.
3. E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices." Amer. Math. Monthly 67 (1960):745-752.
