ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
Assistant Editors
GLORIA C. PADILLA and CHARLES R. WALL

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS
The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE
B-568 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA
Find a simple curve passing through all of the points

$$
\left(F_{1}, L_{1}\right),\left(F_{3}, L_{3}\right), \ldots,\left(F_{2 n+1}, L_{2 n+1}\right), \ldots .
$$

B-569 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA
Find a simple curve passing through all of the points

$$
\left(F_{0}, L_{0}\right),\left(F_{2}, L_{2}\right), \ldots,\left(F_{2 n}, L_{2 n}\right), \ldots .
$$

B-570 Proposed by Herta T. Freitag, Roanoke, VA
Let a, b, and c be the positive square roots of $F_{2 n-1}, F_{2 n+1}$, and $F_{2 n+3}$, respectively. For $n=1,2$, ..., show that

$$
(a+b+c)(-a+b+c)(a-b+c)(a+b-c)=4
$$

B-571 Proposed by Heinz-Jürgen Seiffert, Student, Berlin, Germany
Conjecture and prove a simple expression for

$$
\sum_{r=0}^{[n / 2]} \frac{n}{n-r}\binom{n-r}{r}
$$

where $[n / 2]$ is the largest integer m with $2 m \leqslant n$.

ELEMENTARY PROBLEMS AND SOLUTIONS

B-572 Proposed by Ambati Jaya Krishna, Student, Johns Hopkins University, Baltimore, MD, and Gomathi S. Rao, Orangeburg, SC

Evaluate the continued fraction:

$$
1+\frac{2}{3+\frac{4}{5+\frac{6}{7+\cdots}}}
$$

B-573 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
For all nonnegative integers n, prove that

$$
\sum_{k=0}^{n}\binom{n}{k} L_{k} L_{n-k}=4+5 \sum_{k=0}^{n}\binom{n}{k} F_{k} F_{n-k}
$$

SOLUTIONS

Congruence Modulo 12

B-544 Proposed by Herta T. Freitag, Roanoke, VA
Show that $F_{2 n+1}^{2} \equiv L_{2 n+1}^{2}(\bmod 12)$ for all integers n.
Solution by Piero Filipponi, Fdn. U. Bordoni, Rome, Italy
First we rewrite the statement as

$$
\begin{equation*}
L_{2 n+1}^{2}-F_{2 n+1}^{2} \equiv 0(\bmod 12), \tag{1}
\end{equation*}
$$

then using Hoggatt's I_{18} and I_{17}, we obtain

$$
L_{2 n+1}^{2}-F_{2 n+1}^{2}=4\left(F_{2 n+1}^{2}-1\right)=4\left(F_{2 n+1}+1\right)\left(F_{2 n+1}-1\right)
$$

Since $F_{2 n+1} \equiv \pm 1(\bmod 3)$, it is apparent that congruence (l) is satisfied for all integers n.

Also solved by Wray G. Brady, Paul S. Bruckman, L. A. G. Dresel, A. F. Horadam, L. Kuipers, Bob Prielipp, M. Robert Schumann, Heinz-Jürgen Seiffert, A. G. Shannon, Sahib Singh, Lawrence Somer, J. Suck, and the proposer.

Congruences Modulo 5

B-545 Proposed by Herta T. Freitag, Roanoke, VA
Show that there exist integers a, b, and c such that

$$
F_{4 n} \equiv a n(\bmod 5) \quad \text { and } \quad F_{4 n+2} \equiv b n+c(\bmod 5)
$$

for all integers n.
Solution by Hans Kappus, Rodersdorf, Switzerland
We prove by induction that for $n=0,1,2, .$.

$$
\begin{align*}
& F_{4 n} \equiv 3 n(\bmod 5) \tag{1}\\
& F_{4 n+2} \equiv 2 n+1(\bmod 5) \tag{2}
\end{align*}
$$

This is obviously true for $n=0,1,2$. Assume (1) and (2) hold for some $n \geqslant 2$. Then for this n,

$$
\begin{aligned}
& F_{4 n+1} \equiv F_{4 n+2}-F_{4 n} \equiv 4 n+1(\bmod 5), \\
& F_{4 n+3} \equiv 2 F_{4 n+2}-F_{4 n} \equiv n+2(\bmod 5), \\
& \text { re } \\
& F_{4(n+1)} \equiv 3 F_{4 n+2}-F_{4 n} \equiv 3(n+1)(\bmod 5),
\end{aligned}
$$

hence (1) is true for all n. Furthermore,

$$
F_{4(n+1)+2} \equiv 2 F_{4(n+1)}+F_{4 n+3} \equiv 2(n+1)+1(\bmod 5)
$$

The proof is now finished.
Also solved by Wray G. Brady, Paul S. Bruckman, L. A. G. Dresel, A. F. Horadam, L. Kuipers, Bob Prielipp, Heinz-Jürgen Seiffert, A. G. Shannon, Sahib Singh, J. Suck, and the proposer.

Fibonacci Combinatorial Problem

B-546 Proposed by Stuart Anderson, East Texas State University, Commerce, TX and John Corvin, Amoco Research, Tulsa, OK

For positive integers a, let S_{a} be the finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ defined by

$$
\begin{aligned}
& \qquad a_{1}=a \\
& a_{i+1}=a_{i} / 2 \text { if } a_{i} \text { is even, } a_{i+1}=1+a_{i} \text { if } a_{i} \text { is odd, } \\
& \text { the sequence terminates with the earliest term that equals } 1 .
\end{aligned}
$$

For example, S_{5} is the sequence $5,6,3,4,2,1$, of six terms. Let K_{n} be the number of positive integers a for which S_{a} consists of n terms. Does K_{n} equal something familiar?

Solution by Piero Filipponi, Fdn. U. Bordoni, Rome, Italy
It is evident that the only sequence of length 1 is S_{1}, the only sequence of length 2 is S_{2}, and the only sequence of length 3 is S_{4}. That is, we have

$$
\begin{equation*}
k_{1}=k_{2}=k_{3}=1 \tag{1}
\end{equation*}
$$

Let us read the sequences in reverse order so that α is the $n^{\text {th }}$ term of S_{a}. By definition, a sequence S_{a}^{n} (of length n) can generate exactly one(two) sequence(s) S_{a}^{n+1} of length $n+1$, if a is odd (even). Denoting by $e\left(S_{a}^{n}\right)$ and $\circ\left(S_{a}^{n}\right)$ the number of sequences of length n ending with an even term and with an odd term, respectively, we can write

$$
\begin{aligned}
& \mathrm{e}\left(S_{a}^{n+1}\right)=k_{n} \\
& \mathrm{o}\left(S_{a}^{n+1}\right)=\mathrm{e}\left(S_{a}^{n}\right)=k_{n-1},
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
k_{n+1}=\mathrm{e}\left(S_{a}^{n+1}\right)+\mathrm{o}\left(S_{a}^{n+1}\right)=k_{n}+k_{n-1} \tag{2}
\end{equation*}
$$

From (1) and (2), it is readily seen that

$$
k_{n}=F_{n-1}, \text { for } n>1
$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Ben Freed \& Sahib Singh, Hans Kappus, L. Kuipers, Graham Lord, J. Suck, and the proposer.

Return Engagement

B-547 Proposed by Philip L. Mana, Albuquerque, NM
For positive integers p and n with p prime, prove that

$$
L_{n p} \equiv L_{n} L_{p}(\bmod p)
$$

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, $P A$
This result has been proved in B-182 (The Fibonacci Quarterly, 1970).
Also solved by Paul S. Bruckman, Odoardo Brugia \& Piero Filipponi, L. A. G. Dresel, L. Kuipers, Bob Prielipp, Lawrence Somer, J. Suck, and the propower.

Number of Squares Needed
B-548 Proposed by Valentina Bakinova, Rondout Valley, NY
Let $D(n)$ be defined inductively for nonnegative integers n by $D(0)=0$ and $D(n)=1+D\left(n-[\sqrt{n}]^{2}\right)$, where $[x]$ is the greatest integer in x. Let n_{k} be the smallest n with $D(n)=k$. Then

$$
n_{0}=0, \quad n_{1}=1, \quad n_{2}=2, \quad n_{3}=3, \quad \text { and } \quad n_{4}=7
$$

Describe a recursive algorithm for obtaining n_{k} for $k \geqslant 3$.
Solution by L. A. G. Dresel, University of Reading, England
Let $[\sqrt{n}]=q$, so that $q^{2} \leqslant n \leqslant(q+1)^{2}-1$, and let $R(n)=n-q^{2}$, so that we have $0 \leqslant R(n) \leqslant 2 q$. Suppose now that n is the smallest integer for which $R(n)=r$, and consider the case where r is odd. Then we have $r=2 q-1$ and

$$
n=(q+1)^{2}-2=\frac{1}{4}(r+3)^{2}-2 .
$$

By definition, we have

$$
D\left(n_{k+1}\right)=k+1
$$

and

$$
D\left(n_{k+1}\right)=1+D\left(R\left(n_{k+1}\right)\right) \text {. }
$$

therefore

$$
D\left(R\left(n_{k+1}\right)\right)=k
$$

Since n_{k} is the smallest n for which $D(n)=k$, it follows that
n_{k+1} is the smallest n for which $R(n)=n_{k}$.
Now taking the case where $n \equiv 3(\bmod 4)$, this leads to

$$
n_{k+1} \equiv \frac{1}{4}\left(n_{k}+3\right)^{2}-2
$$

and we have also $n_{k+1} \equiv 3(\bmod 4)$. Hence, starting with $n_{3}=3$, we can use the above recursive algorithm for $k \geqslant 3$.

Also solved by Paul S. Bruckman, Hans Kappus, L. Kuipers, Jerry M. Metzger, Sahib Singh, and the proposer.

Generalized Fibonacci Numbers
B-549 Proposed by George N. Philippou, Nicosia, Cyprus
Let H_{0}, H_{1}, \ldots be defined by $H_{0}=q-p, H_{1}=p$, and $H_{n+2}=H_{n+1}+H_{n}$ for $n=0,1, \ldots$. Prove that, for $n \geqslant m \geqslant 0$,

$$
H_{n+1} H_{m}-H_{m+1} H_{n}=(-1)^{m+1}\left[p H_{n-m+2}-q H_{n-m+1}\right]
$$

Solution by L. A. G. Dresel, University of Reading, England
Define $D(n, m)=H_{n+1} H_{m}-H_{m+1} H_{n}$. Then

$$
\begin{aligned}
D(n, m) & =H_{m}\left(H_{n}+H_{n-1}\right)-H_{n}\left(H_{m}+H_{m-1}\right) \\
& =H_{m} H_{n-1}-H_{n} H_{m-1}=-D(n-1, m-1) .
\end{aligned}
$$

Repeating this reduction step a further m - 2 times, we obtain

$$
\begin{aligned}
D(n, m) & =(-1)^{m-1} D(n-m+1,1) \\
& =(-1)^{m+1}\left(H_{n-m+2} H_{1}-H_{2} H_{n-m+1}\right) \\
& =(-1)^{m+1}\left(p H_{n-m+2}-q H_{n-m+1}\right)
\end{aligned}
$$

Also solved by Paul S. Bruckman, Piero Filipponi, Herta T. Freitag, A. F. Horadam, L. Kuipers, Bob Prielipp, A. G. Shannon, P. D. Siafarikas, Sahib Singh, J. Suck, and the proposer.

$\bullet \diamond \diamond \diamond$

