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1. INTRODUCTION 

For each nonnegative integer n, r3(n) denotes the cardinal number of the 
set: 

{(xl9 x2, x3) e E3\n = x\ + x\ + x\]. 

We here propose to express r3 in terms of simple divisor functions, defined as 
follows. 

Definition: For each pair of positive integers i9 n9 with i, K 29 6^(n) is de-
fined by 

«i(n) = E (-l)0^"1. 
d\n 

d= i (mod 3) 

Theorem 1: Let n denote an arbitrary positive integer. 

(i) If n = 3m2
9 for some positive integer m9 then 

r3(«) = 2 + 6(-l)"[62(«) - 61(n)] 

+ 12(-l)n £(-l)n[62(n " 3i2) - 6-LOZ - 3i2)]. 
i - 1 

(i i) If n is not of the form 3m2, then 

r,(n) = 6(-l)»[62(n) - 6,(n)] 
+ 12(-1)" E (-D"[62(n - 3iz) - 6 An - 3i2)]. 

£ = 1 

In both statements (i) and (ii), summation for the sums indexed by i extends 
over all values of i for which the arguments of 6X and 62 are positive. 

In §29 we prove this theorem. Our concluding remarks are concerned with 
comparison of the present representation of r3 with the classical representa-
tion due to Dirichlet. 

2. PROOF OF THEOREM 1 

Our proof is predicated on the quintuple-product identity 

fi(l- xn)(l - oxn)(l - a~1xn-1)(l - a V n _ 1 ) ( l - a"2^2n_1) 

= £ xn(3n+l)/2(a3n _ a'3"1'1), (1) 

which (as observed by Carlitz and Subbarao[l]) is derivable from the classical 
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triple-product identity 

ft(l - x2n)(l + ax271"1) (I + a"1*2"-1) = £ > " V . (2) 
1 ~z 

Both identities are valid for each pair of complex numbers a9 x such that a ̂  0 
and \x\ < 1. We shall also require the following classical identities associ-
ated with the names of Euler9 Gauss9 and Jacobi* 

ftd - x^-^d + xn) = 1, (3) 

0(1 - x2n)(l + x2"-1)2 = ± xn\ (4) 
l 

Identity (4) is an easy special case of (2) (simply set a = 1), but we list it 
separately to observe that the cube of its right side generates P3. 

In (l)s let a ->• a2 and multiply the resulting identity by a to get: 

(a - a"1) ft (1 - xn)(l - a2xn)(l - a~2xn)(l - aVM_1)(l - a^x2"'1) 

a ^ x n ( 3 n + l ) / 2 a 6 n __ a - l £ xn(3n+ l)/2a-6« 

= a O (1 - x3n)(l + a6x3n"1)(l + a-6x3n~2) 
1 

- a"1 ft (1 - x3n)(l + a-&x3n-1)(l + asx3n~2). (5) 
l 

Here we have used (2) to express the infinite series as infinite products. For 
the sake of brevity9 put 

F(a) = F(as x) = ft (1 - a2xn) (I - a"2xn)(l - a V ' ^ d - a"^2*"1), 
l 

G(a) = C(a9 a) = ft (1 + a V " " ^ ! + a~sx3n-2)9 
l 

and 
tf(a) = £ ( a - 1 ) . 

Hences (5) becomes 

0 (1 - xn)(a - a~1)F(a) = ft (1 - x3n){aG(a) - a'1H(a)}. 
l i 

We now differentiate the foregoing identity with respect to a to get: 

ft d - xn){(l + a~2)F(a) + (a - a~1)FF(a)} 
l 

= ft (1 - x3n){G(a) + a'2H(a) + aGf(a) - a^H^a)}. (6) 
l 

Sequentially, we use the technique of logarithmic differentiation to evaluate 
Gf(a) and Hr(a)9 substitute these evaluations into (6) , let a •> 1 in the result-
ing identitys and finally cancel a factor of 2 to get: 
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Now, 

n ( i - ^ n ) 3 ( i - x 2 n - 3 ) 2 

1 
°° „ « , „ ( / °°  /v»3n-l oo ~ 3 n - 2 \\ 

= n ( i - ^ 3 n ) ( i + ^ - i ) ( i + ^ - 2 ) 1 + 6 ( E — E — )> 
i I \ i l + tf3"-1 i l + x3n-2'> 

= n (l-^3")(l + x3n-1)(l + ̂ 3n-2)|l + 6f; [62(n) - 6x(n)]x4. 

1 (l-a;3n)(l + a:3n-1)(l + a:3w-2) 

- n ( i - ^ ) 3 ( i - ^ - i ) 3 > ( 1 + a : 3 n ) ( 1 + ^ " 1 ) ( 1 + ^ 3 n " 2 ) 
1 ( l - a r 3 n ) ( l + x 3 n - 1 ) ( l + ^ 3 n - 2 ) 

[by E u l e r ' s i d e n t i t y (3 ) ] 

- ltr3(n)(-xA* ft l + ^^ . 
( 0 ) 1 1 - ^ 3 n 

Hence, 

i > 3 ( n ) ( - x ) n = ft - " ^ ^ j l + e f ) [ 6 2 ( w ) - fi^n)]*"} 
0 1 1 + x3n { ! J 

= {l + 2 E(-^3)"2}{l + 6f: [62(n) - 6 ^ ) ] ^ . 

Now, letting x -> -#, we have 

f>3(rc)arn= 1 + 2 f; a:3"2 + 6 L(-l)n[S2(n) - 6 ^ ) ] * * 
0 m« 1 w = 1 

+ 12 £) (-l)nxn£ (-l)M62(n - 3i2) -«,(«- 3i2)]. 

[Here we adopt the convention that &i(k) = 0 whenever /c < 0, £ = 1, 2.] Equat-
ing coefficients of like powers of x9 we thus prove our theorem. [Note that 
r3(0) = 1.] 

CONCLUDING REMARKS 

There is a somewhat complicated formula for r3(n) [n e Z+] due to Dirich-
let. This is: 

'•<"> -T»'ftx!(»«<-ta)-pn(i ^ . . . ^ - ^ - ( e ^ ) ! ) " ) , 

where the d e f i n i t i o n of T i s p 2 T | n , but p 2 ( T + 1 ) | n , 

x(.4„) = ± (—)k> J?x\ m fm 

Here, and above, ( j is a Jacobi symbol. And 

152 [May 



ON THE ENUMERATOR FOR SUMS OF THREE SQUARES 

iO if k~an = 7 (mod 8), 

2~a, if 4_an = 3 (mod 8), 

3.2-1'a9 if k~an = 1, 2, 59 6 (mod 8), 
and here the definition of a is 4a|n, but 4a + 1 \ n. This formula (among others) 
is given by Hua [29 pp. 215-216]. First of all, it is far from obvious that 
this expression for r3(n) is an integers whereas our expressions of Theorem 1 
are clearly integral. However9 Dirichlet's formula permits an easy proof of 
the fact: r3(n) > 09 if and only if, n is not of the form 4a(8tf? + 7 ) . At the 
moment, the author has not seen a way of deducing this fact from Theorem 1. 
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