ON THE ENUMERATOR FOR SUMS OF THREE SQUARES

JOHN A. EWELL
Northern Illinois University, DeKalb, IL 60115
(Submitted September 1984)

1. INTRODUCTION

For each nonnegative integer $n, r_{3}(n)$ denotes the cardinal number of the set:

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3} \mid n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right\}
$$

We here propose to express r_{3} in terms of simple divisor functions, defined as follows.

Definition: For each pair of positive integers i, n, with $i \leqslant 2, \delta_{i}(n)$ is defined by

$$
\delta_{i}(n)=\sum_{d \equiv i(\bmod 3)}(-1)^{(n / d)-1}
$$

Theorem 1: Let n denote an arbitrary positive integer.

$$
\begin{equation*}
\text { If } n=3 m^{2} \text {, for some positive integer } m \text {, then } \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
r_{3}(n)=2 & +6(-1)^{n}\left[\delta_{2}(n)-\delta_{1}(n)\right] \\
& +12(-1)^{n} \sum_{i=1}(-1)^{n}\left[\delta_{2}\left(n-3 i^{2}\right)-\delta_{1}\left(n-3 i^{2}\right)\right]
\end{aligned}
$$

(ii) If n is not of the form $3 m^{2}$, then

$$
\begin{aligned}
& r_{3}(n)=6(-1)^{n}\left[\delta_{2}(n)-\delta_{1}(n)\right] \\
&+12(-1)^{n} \sum_{i=1}(-1)^{n}\left[\delta_{2}\left(n-3 i^{2}\right)-\delta_{1}\left(n-3 i^{2}\right)\right]
\end{aligned}
$$

In both statements (i) and (ii), summation for the sums indexed by i extends over all values of i for which the arguments of δ_{1} and δ_{2} are positive.

In §2, we prove this theorem. Our concluding remarks are concerned with comparison of the present representation of r_{3} with the classical representation due to Dirichlet.

2. PROOF OF THEOREM 1

Our proof is predicated on the quintuple-product identity

$$
\begin{align*}
& \prod_{1}^{\infty}\left(1-x^{n}\right)\left(1-a x^{n}\right)\left(1-a^{-1} x^{n-1}\right)\left(1-a^{2} x^{2 n-1}\right)\left(1-a^{-2} x^{2 n-1}\right) \\
& =\sum_{-\infty}^{\infty} x^{n(3 n+1) / 2}\left(a^{3 n}-a^{-3 n-1}\right) \tag{1}
\end{align*}
$$

which (as observed by Carlitz and Subbarao [1]) is derivable from the classical

ON THE ENUMERATOR FOR SUMS OF THREE SQUARES

triple-product identity

$$
\begin{equation*}
\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1+a x^{2 n-1}\right)\left(1+a^{-1} x^{2 n-1}\right)=\sum_{-\infty}^{\infty} x^{n^{2}} a^{n} \tag{2}
\end{equation*}
$$

Both identities are valid for each pair of complex numbers α, x such that $a \neq 0$ and $|x|<1$. We shall also require the following classical identities associated with the names of Euler, Gauss, and Jacobi.

$$
\begin{align*}
& \prod_{1}^{\infty}\left(1-x^{2 n-1}\right)\left(1+x^{n}\right)=1 \tag{3}\\
& \prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1+x^{2 n-1}\right)^{2}=\sum_{-\infty}^{\infty} x^{n^{2}} \tag{4}
\end{align*}
$$

Identity (4) is an easy special case of (2) (simply set $a=1$), but we list it separately to observe that the cube of its right side generates r_{3}.

In (1), let $a \rightarrow a^{2}$ and multiply the resulting identity by a to get:

$$
\begin{align*}
& \left(a-a^{-1}\right) \prod_{1}^{\infty}\left(1-x^{n}\right)\left(1-a^{2} x^{n}\right)\left(1-a^{-2} x^{n}\right)\left(1-a^{4} x^{2 n-1}\right)\left(1-a^{-4} x^{2 n-1}\right) \\
& =a \sum_{-\infty}^{\infty} x^{n(3 n+1) / 2} a^{6 n}-a^{-1} \sum_{-\infty}^{\infty} x^{n(3 n+1) / 2} a^{-6 n} \\
& =a \prod_{1}^{\infty}\left(1-x^{3 n}\right)\left(1+a^{6} x^{3 n-1}\right)\left(1+a^{-6} x^{3 n-2}\right) \\
& \quad-a^{-1} \prod_{1}^{\infty}\left(1-x^{3 n}\right)\left(1+a^{-6} x^{3 n-1}\right)\left(1+a^{6} x^{3 n-2}\right) . \tag{5}
\end{align*}
$$

Here we have used (2) to express the infinite series as infinite products. For the sake of brevity, put

$$
\begin{aligned}
& F(a)=F(a, x)=\prod_{1}^{\infty}\left(1-a^{2} x^{n}\right)\left(1-a^{-2} x^{n}\right)\left(1-a^{4} x^{2 n-1}\right)\left(1-a^{-4} x^{2 n-1}\right) \\
& G(a)=G(a, x)=\prod_{1}^{\infty}\left(1+a^{6} x^{3 n-1}\right)\left(1+a^{-6} x^{3 n-2}\right)
\end{aligned}
$$

and

$$
H(a)=G\left(a^{-1}\right)
$$

Hence, (5) becomes

$$
\prod_{1}^{\infty}\left(1-x^{n}\right)\left(\alpha-\alpha^{-1}\right) F(\alpha)=\prod_{1}^{\infty}\left(1-x^{3 n}\right)\left\{a G(\alpha)-a^{-1} H(\alpha)\right\}
$$

We now differentiate the foregoing identity with respect to a to get:

$$
\begin{align*}
& \prod_{1}^{\infty}\left(1-x^{n}\right)\left\{\left(1+\alpha^{-2}\right) F(\alpha)+\left(\alpha-a^{-1}\right) F^{\prime}(\alpha)\right\} \\
= & \prod_{1}^{\infty}\left(1-x^{3 n}\right)\left\{G(\alpha)+a^{-2} H(\alpha)+\alpha G^{\prime}(\alpha)-a^{-1} H^{\prime}(\alpha)\right\} \tag{6}
\end{align*}
$$

Sequentially, we use the technique of logarithmic differentiation to evaluate $G^{\prime}(\alpha)$ and $H^{\prime}(\alpha)$, substitute these evaluations into (6), let $\alpha \rightarrow 1$ in the resulting identity, and finally cancel a factor of 2 to get:

$$
\begin{aligned}
& \prod_{1}^{\infty}\left(1-x^{n}\right)^{3}\left(1-x^{2 n-1}\right)^{2} \\
& =\prod_{1}^{\infty}\left(1-x^{3 n}\right)\left(1+x^{3 n-1}\right)\left(1+x^{3 n-2}\right)\left\{1+6\left(\sum_{1}^{\infty} \frac{x^{3 n-1}}{1+x^{3 n-1}}-\sum_{1}^{\infty} \frac{x^{3 n-2}}{1+x^{3 n-2}}\right)\right\} \\
& =\prod_{1}^{\infty}\left(1-x^{3 n}\right)\left(1+x^{3 n-1}\right)\left(1+x^{3 n-2}\right)\left\{1+6 \sum_{1}^{\infty}\left[\delta_{2}(n)-\delta_{1}(n)\right] x^{n}\right\} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \prod_{1}^{\infty} \frac{\left(1-x^{n}\right)^{3}\left(1-x^{2 n-1}\right)^{2}}{\left(1-x^{3 n}\right)\left(1+x^{3 n-1}\right)\left(1+x^{3 n-2}\right)} \\
& =\prod_{1}^{\infty}\left(1-x^{n}\right)^{3}\left(1-x^{2 n-1}\right)^{3} \cdot \frac{\left(1+x^{3 n}\right)\left(1+x^{3 n-1}\right)\left(1+x^{3 n-2}\right)}{\left(1-x^{3 n}\right)\left(1+x^{3 n-1}\right)\left(1+x^{3 n-2}\right)}
\end{aligned}
$$

[by Euler's identity (3)]

$$
=\left\{\sum_{0}^{\infty} r_{3}(n)(-x)^{n}\right\} \cdot \prod_{1}^{\infty} \frac{1+x^{3 n}}{1-x^{3 n}}
$$

Hence,

$$
\begin{aligned}
\sum_{0}^{\infty} r_{3}(n)(-x)^{n} & =\prod_{1}^{\infty} \frac{1-x^{3 n}}{1+x^{3 n}}\left\{1+6 \sum_{1}^{\infty}\left[\delta_{2}(n)-\delta_{1}(n)\right] x^{n}\right\} \\
& =\left\{1+2 \sum_{1}^{\infty}\left(-x^{3}\right)^{n^{2}}\right\}\left\{1+6 \sum_{1}^{\infty}\left[\delta_{2}(n)-\delta_{1}(n)\right] x^{n}\right\} .
\end{aligned}
$$

Now, letting $x \rightarrow-x$, we have

$$
\begin{aligned}
\sum_{0}^{\infty} r_{3}(n) x^{n}=1 & +2 \sum_{m=1}^{\infty} x^{3 m^{2}}+6 \sum_{n=1}^{\infty}(-1)^{n}\left[\delta_{2}(n)-\delta_{1}(n)\right] x^{n} \\
& +12 \sum_{n=1}^{\infty}(-1)^{n} x^{n} \sum_{i=1}(-1)^{i}\left[\delta_{2}\left(n-3 i^{2}\right)-\delta_{1}\left(n-3 i^{2}\right)\right]
\end{aligned}
$$

[Here we adopt the convention that $\delta_{i}(k)=0$ whenever $k<0, i=1,2$.] Equating coefficients of like powers of x, we thus prove our theorem. [Note that $r_{3}(0)=1$.]

CONCLUDING REMARKS

There is a somewhat complicated formula for $r_{3}(n)\left[n \in \mathbb{Z}^{+}\right]$due to Dirichlet. This is:

$$
r_{3}(n)=\frac{16}{\pi} n^{1 / 2} \chi_{2}(n) K(-4 n) \cdot \prod_{p^{2} \mid n}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{\tau-1}}+\frac{1}{p^{\tau}}\left(1-\left(\frac{p^{-2 \tau} n}{p}\right) \frac{1}{p}\right)^{-1}\right)
$$

where the definition of τ is $p^{2 \tau} \mid n$, but $p^{2(\tau+1)} \mid n$,

$$
K(-4 n)=\sum_{m=1}^{\infty}\left(\frac{-4 n}{m}\right) \frac{1}{m},
$$

Here, and above, $\left(\frac{-4 n}{m}\right)$ is a Jacobi symbol. And

$$
x_{2}(n)= \begin{cases}0 & \text { if } 4^{-a} n \equiv 7(\bmod 8) \\ 2^{-a}, & \text { if } 4^{-a} n \equiv 3(\bmod 8) \\ 3.2^{-1-a}, & \text { if } 4^{-a} n \equiv 1,2,5,6(\bmod 8),\end{cases}
$$

and here the definition of a is $4^{a} \mid n$, but $4^{a+1} \mid n$. This formula (among others) is given by Hua [2, pp. 215-216]. First of all, it is far from obvious that this expression for $r_{3}(n)$ is an integer, whereas our expressions of Theorem 1 are clearly integral. However, Dirichlet's formula permits an easy proof of the fact: $r_{3}(n)>0$, if and only if, n is not of the form $4^{a}(8 m+7)$. At the moment, the author has not seen a way of deducing this fact from Theorem 1.

REFERENCES

1. L. Carlitz \& M. V. Subbarao. "A Simple Proof of the Quintuple-Product Identity." Proc. Amer. Math. Soc. 32 (1972):42-44.
2. Loo-Keng Hua. Introduction to Number Theory. New York: Springer-Verlag, 1982.
$\diamond \diamond \diamond \diamond$
