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We denote the nth ^-gonal number by 

Pn,g = n^(9 ~ 2)n - (g - 4)}/2. 

For g = 39 5S 6, and 8, we denote Pn,g by Tns the triangular numbers, Pf
n9 the 

pentagonal numbers, Hn9 the hexagonal numbers, and 0n, the octagonal numbers, 
respectivelyo We denote Pntg by Pn whenever there is no danger of confusion* 

Sierpinski [18] has proved that "there exist an infinite number of trian-
gular numbers which are, at the same time, the sums, differences and products 
of two other triangular numbers> 1.tf Ando [1] proved that "there exist an in-
finite number of ^-gonal numbers that can be expressed as the sum and differ-
ence of two other ^-gonal numbers at the same time." It was also shown in [6] 
that there are an infinite number of ^-gonal numbers that can be expressed as 
the product of two other ^-gonal numbers. 

The present paper will show that there are infinitely many ^-gonal numbers 
(#=5,6, and 8) which are at the same time the sums, differences, and products 
of two other #-gonal numbers. 

1. THE EQUATION Pu + W + Pv + W = Pu+v + w 

If Px + Py = Pz 9 by putting u = z - y 9 v = z - x 5 and w - x + y - z9 we have 
x = u + w9 y = V + W9 and z = u + V + w. However, a little algebra shows that 
Pu + w + Pv + w = Pu+v + w implies 2(g - 2)uv = (g - 2)w(w - 1) + 2w. Hence 

Theorem 1: Any solution x9 y9 z of the equation Px + Py = Pz can be expressed 
as x ~ u + w9 y = v + w9 z = u + v + w9 where 

w = 0 (mod g - 2) 
and 

uv = {(g - 2)w2 - (g - *)w}/2(g - 2). 

Using this theorem, which is a generalization of the work of Fauquembergue 
[7] and of Shah [15] on triangular numbers, we can obtain the solutions of the 
equation Px + Py - Pz in an efficient way. For example, we have the following 
table for g - 5. 
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Table 1. Pj + PJ = Pa' (w < 9, u < y) 

w 

3 

6 

9 

(3w2 - w)/6 

4 

17 

39 

u v 

2 2 
1 4 

1 17 

3 13 
1 39 

x y z ' 

5 5 7 ' 
4 7 8 

7 23 24 

12 22 25 
10 48 49 

If we put v + w = w' in P1 + y + w = P1 + w + Py+W and P1 + u, =P1 + y,+ ZJ, - Py + y , 
then we obtain ^-gonal numbers that can be expressed as the sum and difference 
of two other ^-gonal numbers at the same time. 

Corollary: If w = 0 (mod (g - 2)2) and v = {(g - 2)w2 - (g - h)w}/2{g - 2), 
then we have 

Pz,+ W+1 =
 Pw+1 + P

y + W =
 Pa ~ Pb> w h e r e 

a = {(g - 2)(v + w)z - (g - 4) (z; + w)}/2(g - 2) + v + w + 1 
and 

6 » {(# - 2)(i> + w)2 - (g - 4)(i? + w)}/2(g - 2) + v + w. 

Putting w = x- 1 for g - 3, we obtain a result of Sierpinski [18]; putting 
w = 9n for # = 5, w = 16n for # = 6, w = 25k for g - 19 and w = 36n for # = 8, 
we obtain the results of Hansen [9], 0TDonnell [13], Hindin [10], and O'Donnell 
[14], respectively. 

2. THE EQUATION Pat_d + Pbt.e = Pat.f 

In this section we stud}̂  somewhat more general second-degree sequences than 
Pn9 and obtain necessary and sufficient conditions for certain infinite fami-
lies of representations to exist. We then specialize to polygonal numbers. To 
this end, let P(a, 3; n) = n(an - 3)» where a, 3 are integers with (a, 3) = 1 
and a > 0. 

Theorem 2: Let a, b9 o9 d9 e9 and / be integers with a, b, and c positive and 
(a, b, c) = 1. A necessary and sufficient condition for the identity in t9 

P(a, 3; at - d) + P(a, 3; bt - e) = P(a, 3; ct - f) 9 

to hold is that there exist integers p, <?, r, and s that satisfy equations (0) 
and (I), or (0) and (II): 

a = (p + q)(p - q)9 b = 2pq, c = p2 + q2
9 

(0) 
(p, <?) = ls p > £7 > 0, p + g = 1 (mod 2), 
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(d={p + q)r, e = £s, f = (p - q)r + %-s, 

{ (I) 
{q = 0 (mod a), 2apr - (p - <?)s = -g, 
(d = £"=-^r, e - ps, f - ^ ^ r + qs, 
\ a a (ID 
[p - q (mod a), 2ar - a(p + a)s = B« 

Proof: In order for the desired identity in t9 

(at - d) (aat - ad - B) + (&£ - e) (afct - ae - B) = (ot - /) (act - af - B), 

to holdj it is necessary and sufficient that the equations 

a2 + b2 = c2, (1) 

(2ad + 3)a + (2ae + &)b = (2a/ + $)c9 (2) 

(ad + B)d + (ae + B)e = (af + B)/ (3) 

be valid. 
From (2)s 

of = ad + be + — ^ » (*) 

and from (1)9 (3)s and (4), we obtain 

(a2 + b2){(ad + &)d + (ae + B)e} 
= c2(af + B)jf 

= a(e/)2 + B̂ (ef) 

- a{ad + be + 3(^^1|2
 + g ^ + ^ + B(a +£ - o)y 

Expanding and transforming the above9 we have 

a(bd - ae)2 - B(a - b) (bd - ae) - &^ = 0. 

Hence9 

(a) 

.(b) 

fed -

M -

B(a ae = —— 

B(a 
ae = —— 

- b - c) 
2a 

- fc + o) 
2a 

(5) 

Now, for positive integers a9 &9 and e with (a9 £>9 e) = 1 and b even9 the 
solutions of (1) are given by 

(a = (p + a)(p - a), 2? = 2pa9 c = p2 + a2s where 
(0) <p and a are positive integral parameters with 

\(p» q) = 19 p > a > 0 9 and p + a = 1 (mod 2). 

Equations (6) and (7) below are necessary for (4) and (5) to hold. 

B(a + b - c) = 2Ba(p - q) = 0 (mod 2a), (6) 
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(7) 

(8) 

((a) $(a - b - c) = -2&q(p + q) = 0 (mod 2a), or 

}(b) 6(a - 2? + c) = 23p(p - q) = 0 (mod 2a). 

Since (a, 3) = 1 and (ps q) = 1, (6) and (7) hold only if 

((a) g E 0 (mod a), or 

((b) p E q (mod a) . 

(I) If q E 0 (mod a), (5)(a) becomes 

2pqd - (p + q)(p - q)e = -3^(p + <?) , 

so that we have 
q 

2app - (p - q)s = -6, where d = (p + qOr and £ = — s. 

Substituting this into (4), we have/ = (p - <̂ )r + -̂ -s. 

(II) If p E q (mod a), (5)(b) becomes 

2pqd - (p + <?) (p - (7)e = 3p - £-=-£ , 

so that we have 

2qr - a(p + q)s = B, where <i = ̂  " "v and e = ps. 

Substituting this into (4), we have f = — -r + qs* Thus, we have the equiv-
alence relation 

(1) • (2) • (3) <N> (0) • (4) • (5) ̂  (0) • (I) or (0) • (II), 

which proves Theorem 2. 

Corollary: Solutions of Px + Py = Pz are obtained by x = at - d9 y = bt - e, 
z = ct - f. We use Theorem 2 by putting 

PntQ = -F(g - 2, £ - 4; n) for # odd, and 

Dn,<7 = K^T^' ̂ ~ ; W) f° r ̂ (M) eVen* 
In the case g = 4, we obtain a, 2?, and c from Theorem 2 (0) by putting d - e = 
/ = 0. 

Example: If g = 5, then a = 3, 6 = 1. Since q = 0 (mod 3), or p = q (mod 3), 
and (p, g) = 1, p > q > 09 p + q E 1 (mod 2), we have 

q = 1; p = 4, 109 16, ..., 

<? = 2; p = 5, 11, 17, ..., 

q = 3; p = 4, 8, 10, 14, 16, ... . 
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When p = 4* q = 19 2qr - a(p+q)s = 6 becomes 2v - 15s = 19 where one s o l u t i o n 
i s r = 8 , s = 1. Using t h e s e v a l u e s i n (0) • ( I I ) , we o b t a i n 

and 
a = 15, b = 89 c = 179 d = 89 e = 49 / = 99 

P f -I- P f = P f 

15*-8 8 £ - 4 M 7 * - 9 
Changing £ i n t o 8t - 3 and 17t - 79 we have 

P ' = pf + P f = P f - Pf 

136£-60 120t -53 64£-28 289£-128 255 t -113" 

T a b , e 2 - C - d + pfct-e = p</t-/> p* + py = p* <2 < 3 ° ) 

( I I ) 

( I ) 

! (ID 
i ( i ) 

p 

4 

4 

5 
8 

<7 

1 

3 

2 
3 

p 

8 

0 

16 
3 

s 

1 

1 

3 
29 

a 

15 

7 

21 
55 

b 

8 

24 

20 
48 

c 

17 

25 

29 
73 

d 

8 

0 

16 
33 

e 

4 

1 

15 
29 

/ 

9 

1 

22 
44 

t 

1 
2 

1 

1 
1 

X 

7 
22 

7 

5 
22 

2/ 

4 
12 

23 

5 
19 

z 

8 
25 

24 

7 
29 

Table 3- Correspondence of t he S o l u t i o n s of P^ + Py = Ps i n [1] 
Ex. 1 

9 

k:even 

£:odd 

P a r i t y 

£:even 

tsodd 

Case 

( i ) 

( i ) 

(ID 

p 

- & ^ * + i 

4 ^ * + i 

(fc- 2 ) 2 t + 1 

3 

( k - 2 ) 2 

2 * 

(k-2)2 

2 V 

1 

r 

0 

0 

(&- 2 ) 3 t + (3fc- 8) 
2 

s 

fc-4 
2 

fc-4 

1 

£ 

1 

1 

1 

THE EQUATIONS Pz ?x + Py 

For # ^ 49 if (g - 2)Pn - (g - 4) = 2Pm 9 we conjecture that PPn = PnPm can 
be expressed as the sum and difference of two other ^-gonal numbers. But we 
cannot prove this. However, we have 

Theorem 3" There exist an infinite number of hexagonal numbers that can be 
expressed as the sum-difference-product of two other hexagonal numbers. 

Proof: If we assume Hn = #3#m» then we have (4n - 1) - 15(4m - 1) = -14. By 
putting N = kn - 19 M = km'- 19 we get N2 

is given by the formulas 
15MZ -14. Its complete solution 
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( i ) Ni + y/l5Mi = ±(1 + / 1 5 ) ( 4 + JlS)* 
and 

( i i ) Ni + VTEMi = ± ( - 1 + / L 5 ) ( 4 + / l 5 ) \ 

where i = 0 , ± 1 , ±2, ±3, . . . . . 
In ( i ) , i f Ni + v / l 5 ^ > 0 , i > 0 , and i E 2 (mod 4 ) , then ^ = Af̂  = - 1 (mod 

4 ) . #£ s a t i s f i e s a r e c u r r e n c e r e l a t i o n 

"i + 2 = 8Ni + l " "i> 

which leads to Ni + k = 62Ni + 2 - N^. Also, by repetition, il̂  + 8 = 3842% + h - N^. 
From 4n^ + 8 - 1 = 3842(4n^ + It - 1 ) - (4n^ - 1), it follows that ni + s = 3842ni+l> -
ni - 960. Changing ki - 2 into *£, it becomes 

ni + 2 = 3 8 4 2 n i + l " n ^ - 9 6 0> 

with initial values nx =38, n2 = 145058. Similarly, we get 

mi + 2 = 3842mi + 1 - TTZ* - 960, 

with initial values mx = 10, w2 = 37454. 
For all i, we have 

Eni = # 3 #^ = Ibmiilmi - 1) 

= ( 4 ^ - 1) (8?77 - 3) - (m* - 1) (277?̂  - 3) 

#%?;-l ~ Hmi -l" 

For i E 1 (mod 7), we have n^ E -1 (mod 13). On taking t = (n^ + 1)/13 in 

we get 
#13t- 1 "* #5* + #12t- Is 

^ i " #(5wf+5)/13 + #(12^-- 1)/13 ' 

Thus, for £ = 1 (mod 7), #ni is expressed as the sum-difference-product of two 
other hexagonal numbers. If we put i = 1, then we have 

#38 = #15 + #35 = #39 " #9 = #3#10 ' 

In a similar way, we obtain 

Theorem 4: For g ~ 5 and 8, there exist an infinite number of g-gonal numbers 
that can be expressed as the sum-difference-product of two other g'-gonal num-
bers . 

Proof: If we put 

n1 = 4 , n2 = 600912, ni + 2 = 155234wi + 1 - n^ - 25872) 
> i = 1 , 2 , 3 , . . . , 

m1 = 1, 7?72 = 128115, 77?̂  + 2 = 155234T??€ + 1 - mt - 25872) 

t h e n , fo r £ = 9 (mod 14 ) , we have n . E 7 (mod 29) and w^ = 1 (mod 2 ) , so t h a t 
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Cni
 r(2lni-2)/29 * r(20w€ + 5)/29 ^(23mi-7)/2 M21Wi-7) /2 

Alsos if we put 

n± =304, n2 = 1345421055984, 
ni+2 = 4430499842?-^+1 - ni - 1476833280 

mx = 38, m2 = 166878943590, 
mi + 2 = 4430499842^ + 1 - mi - 1476833280 

then, for i E 0, 1 (mod 7), we have n E 14 (mod 29), so that 

0** = £(21^-4)/29 + ^(20n,+ 10)/29 = °3mi-h ~ °hmi-li
 = ^5 < V 

Here , i f we put £ = 1, then we have 

^304 = ^220 + ^210 = ^338 ° 148 = ^5^38° 
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LETTER TO THE EDITOR 

19 December 1985 

Dear Ed i to r : 

Before the publication of my article, "Generators of Unitary Amicable Num-
bers," in the May 1985 issue of The Fibonacci Quarterly, Dr. H. J. J. te Riele 
and I exchanged letters concerning unitary amicable numbers. He pointed out 
that his report, NW 2/78, published by the Matematisch Centrum in Amsterdam 
(with which he is affi 1 lated), contains many of the results in my paper, albeit 
from a slightly different point of view. Both references to these letters and 
to report NW 2/78 were inadvertently omitted from my article. 

The Centrum's address: 
Stichting Matematisch Centrum 
Kruislaan 413 1098 SJ Amsterdam 
Postbus 4079 1009 AB Amsterdam 
The Netherlands 

Sincerely yours, 

0. Wi11iam McClung 
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