ON SOME POLYGONAL NUMBERS Which ARE, at the same time,
 THE SUMS, DIFFERENCES, AND PRODUCTS OF TWO OTHER POLYGONAL NUMBERS

SHOICHI HIROSE
Mita High School, Tokyo 108 Japan
(Submitted December 1981)

We denote the nth g-gonal number by

$$
P_{n, g}=n\{(g-2) n-(g-4)\} / 2 .
$$

For $g=3,5,6$, and 8 , we denote $P_{n, g}$ by T_{n}, the triangular numbers, P_{n}^{\prime}, the pentagonal numbers, H_{n}, the hexagonal numbers, and O_{n}, the octagonal numbers, respectively. We denote $P_{n, g}$ by P_{n} whenever there is no danger of confusion.

Sierpiński [18] has proved that "there exist an infinite number of triangular numbers which are, at the same time, the sums, differences and products of two other triangular numbers>1." Ando [1] proved that "there exist an infinite number of g-gonal numbers that can be expressed as the sum and difference of two other g-gonal numbers at the same time." It was also shown in [6] that there are an infinite number of g-gonal numbers that can be expressed as the product of two other g-gonal numbers.

The present paper will show that there are infinitely many g-gonal numbers ($g=5,6$, and 8) which are at the same time the sums, differences, and products of two other g-gonal numbers.

1. THE EQUATION $P_{u+w}+P_{v+w}=P_{u+v+w}$

If $P_{x}+P_{y}=P_{z}$, by putting $u=z-y, v=z-x$, and $w=x+y-z$, we have $x=u+w, y=v+w$, and $z=u+v+w$. However, a little algebra shows that $P_{u+w}+P_{v+w}=P_{u+v+w}$ implies $2(g-2) u v=(g-2) w(w-1)+2 w$. Hence

Theorem 1: Any solution x, y, z of the equation $P_{x}+P_{y}=P_{z}$ can be expressed as $x=u+w, y=v+w, z=u+v+w$, where

$$
w \equiv 0(\bmod g-2)
$$

and

$$
u v=\left\{(g-2) w^{2}-(g-4) w\right\} / 2(g-2)
$$

Using this theorem, which is a generalization of the work of Fauquembergue [7] and of Shah [15] on triangular numbers, we can obtain the solutions of the equation $P_{x}+P_{y}=P_{z}$ in an efficient way. For example, we have the following table for $g=5$.

Table 1. $P_{x}^{\prime}+P_{y}^{\prime}=P_{z}^{\prime}(w \leqslant 9, u \leqslant v)$

w	$\left(3 w^{2}-w\right) / 6$	u	v	x	y	z
3	4	2	2	5	5	7
		1	4	4	7	8
6	17	1	17	7	23	24
9	39	3	13	12	22	25
1	39	10	48	49		

If we put $v+w=w^{\prime}$ in $P_{1+v+w}=P_{1+w}+P_{v+w}$ and $P_{1+w^{\prime}}=P_{1+v^{\prime}+w^{\prime}}-P_{v^{\prime}+w^{\prime}}$, then we obtain g-gonal numbers that can be expressed as the sum and difference of two other g-gonal numbers at the same time.

Corollary: If $w \equiv 0\left(\bmod (g-2)^{2}\right)$ and $v=\left\{(g-2) w^{2}-(g-4) w\right\} / 2(g-2)$, then we have

$$
\begin{aligned}
P_{v+w+1} & =P_{w+1}+P_{v+w}=P_{a}-P_{b}, \text { where } \\
a & =\left\{(g-2)(v+w)^{2}-(g-4)(v+w)\right\} / 2(g-2)+v+w+1
\end{aligned}
$$

and

$$
b=\left\{(g-2)(v+w)^{2}-(g-4)(v+w)\right\} / 2(g-2)+v+w
$$

Putting $w=x-1$ for $g=3$, we obtain a result of Sierpiński [18]; putting $w=9 n$ for $g=5, w=16 n$ for $g=6, w=25 k$ for $g=7$, and $w=36 n$ for $g=8$, we obtain the results of Hansen [9], 0'Donne11 [13], Hindin [10], and 0'Donnell [14], respectively.

2. THE EQUATION $P_{a t-d}+P_{b t-e}=P_{c t-f}$

In this section we study somewhat more general second-degree sequences than P_{n}, and obtain necessary and sufficient conditions for certain infinite families of representations to exist. We then specialize to polygonal numbers. To this end, let $F(\alpha, \beta ; n)=n(\alpha n-\beta)$, where α, β are integers with $(\alpha, \beta)=1$ and $\alpha>0$.

Theorem 2: Let a, b, c, d, e, and f be integers with a, b, and c positive and $(a, b, c)=1$. A necessary and sufficient condition for the identity in t,

$$
F(\alpha, \beta ; a t-d)+F(\alpha, \beta ; b t-e)=F(\alpha, \beta ; c t-f),
$$

to hold is that there exist integers p, q, r, and s that satisfy equations (0) and (I), or (0) and (II):

$$
\left\{\begin{array}{l}
a=(p+q)(p-q), b=2 p q, c=p^{2}+q^{2} \tag{0}\\
(p, q)=1, p>q>0, p+q \equiv 1(\bmod 2)
\end{array}\right.
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
d=(p+q) r, e=\frac{q}{\alpha} s, f=(p-q) r+\frac{q}{\alpha} s, \\
q \equiv 0(\bmod \alpha), 2 \alpha p r-(p-q) s=-\beta
\end{array}\right. \tag{I}\\
& \left\{\begin{array}{l}
d=\frac{p-q}{\alpha} r, e=p s, f=\frac{p-q}{\alpha} r+q s \\
p \equiv q(\bmod \alpha), 2 q r-\alpha(p+q) s=\beta .
\end{array}\right. \tag{II}
\end{align*}
$$

Proof: In order for the desired identity in t,

$$
(a t-d)(\alpha a t-\alpha d-\beta)+(b t-e)(\alpha b t-\alpha e-\beta)=(c t-f)(\alpha c t-\alpha f-\beta)
$$

to hold, it is necessary and sufficient that the equations

$$
\begin{align*}
& a^{2}+b^{2}=c^{2} \tag{1}\\
& (2 \alpha d+\beta) a+(2 \alpha e+\beta) b=(2 \alpha f+\beta) c \tag{2}\\
& (\alpha d+\beta) d+(\alpha e+\beta) e=(\alpha f+\beta) f \tag{3}
\end{align*}
$$

be valid.
From (2),

$$
\begin{equation*}
c f=a d+b e+\frac{\beta(a+b-c)}{2 \alpha}, \tag{4}
\end{equation*}
$$

and from (1), (3), and (4), we obtain

$$
\begin{aligned}
\left(\alpha^{2}\right. & \left.+b^{2}\right)\{(\alpha d+\beta) d+(\alpha e+\beta) e\} \\
& =c^{2}(\alpha f+\beta) f \\
& =\alpha(c f)^{2}+\beta c(c f) \\
& =\alpha\left\{a d+b e+\frac{\beta(a+b-c)}{2 \alpha}\right\}^{2}+\beta c\left\{a d+b e+\frac{\beta(\alpha+b-c)}{2 \alpha}\right\}
\end{aligned}
$$

Expanding and transforming the above, we have

$$
\alpha(b d-a e)^{2}-\beta(a-b)(b d-a e)-\frac{\beta^{2} a b}{2 \alpha}=0
$$

Hence,

$$
\left\{\begin{array}{l}
(a) \quad b d-a e=\frac{\beta(a-b-c)}{2 \alpha}, \text { or } \tag{5}\\
(b) \quad b d-a e=\frac{\beta(a-b+c)}{2 \alpha} .
\end{array}\right.
$$

Now, for positive integers a, b, and c with $(a, b, c)=1$ and b even, the solutions of (1) are given by
(0)

$$
\left\{\begin{array}{l}
a=(p+q)(p-q), b=2 p q, c=p^{2}+q^{2}, \text { where } \\
p \text { and } q \text { are positive integral parameters with } \\
(p, q)=1, p>q>0, \text { and } p+q \equiv 1(\bmod 2) .
\end{array}\right.
$$

Equations (6) and (7) below are necessary for (4) and (5) to hold.

$$
\begin{equation*}
\beta(a+b-c)=2 \beta q(p-q) \equiv 0(\bmod 2 \alpha) \tag{6}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
(\mathrm{a}) \quad \beta(a-b-c)=-2 \beta q(p+q) \equiv 0(\bmod 2 \alpha), \text { or } \tag{7}\\
(\mathrm{b}) \quad \beta(a-b+c)=2 \beta p(p-q) \equiv 0(\bmod 2 \alpha) .
\end{array}\right.
$$

Since $(\alpha, \beta)=1$ and $(p, q)=1,(6)$ and (7) hold only if

$$
\left\{\begin{array}{l}
(\mathrm{a}) \tag{8}\\
(\mathrm{b}) \\
p \equiv 0(\bmod \alpha), \text { or } \\
(\bmod \alpha) .
\end{array}\right.
$$

(I) If $q \equiv 0(\bmod \alpha),(5)(a)$ becomes

$$
2 p q d-(p+q)(p-q) e=-\beta \frac{q}{\alpha}(p+q)
$$

so that we have

$$
2 \alpha p r-(p-q) s=-\beta, \text { where } d=(p+q) r \text { and } e=\frac{q}{\alpha} s
$$

Substituting this into (4), we have $f=(p-q) r+\frac{q}{\alpha} s$.
(II) If $p \equiv q(\bmod \alpha)$, (5) (b) becomes

$$
2 p q d-(p+q)(p-q) e=\beta p \cdot \frac{p-q}{\alpha}
$$

so that we have

$$
2 q r-\alpha(p+q) s=\beta, \text { where } d=\frac{p-q}{\alpha} r \text { and } e=p s
$$

Substituting this into (4), we have $f=\frac{p-q}{\alpha} p+q s$. Thus, we have the equivalence relation

$$
(1) \cdot(2) \cdot(3) \Leftrightarrow(0) \cdot(4) \cdot(5) \Leftrightarrow(0) \cdot(I) \text { or }(0) \cdot(I I)
$$

which proves Theorem 2.
Corollary: Solutions of $P_{x}+P_{y}=P_{z}$ are obtained by $x=a t-d, y=b t-e$, $z=c t-f$. We use Theorem 2 by putting

$$
\begin{aligned}
& P_{n, g}=\frac{1}{2} F(g-2, g-4 ; n) \text { for } g \text { odd, and } \\
& P_{n, g}=F\left(\frac{g-2}{2}, \frac{g-4}{2} ; n\right) \text { for } g(\neq 4) \text { even. }
\end{aligned}
$$

In the case $g=4$, we obtain a, b, and c from Theorem 2 (0) by putting $d=e=$ $f=0$.

Example: If $g=5$, then $\alpha=3, \beta=1$. Since $q \equiv 0(\bmod 3)$, or $p \equiv q(\bmod 3)$, and $(p, q)=1, p>q>0, p+q \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
q & =1 ; p=4,10,16, \ldots \\
q & =2 ; p=5,11,17, \ldots \\
q & =3 ; p=4,8,10,14,16, \ldots
\end{aligned}
$$

When $p=4, q=1,2 q r-\alpha(p+q) s=\beta$ becomes $2 r-15 s=1$, where one solution is $r=8, s=1$. Using these values in (0) • (II), we obtain

$$
a=15, b=8, c=17, d=8, e=4, f=9
$$

and

$$
P_{15 t-8}^{\prime}+P_{8 t-4}^{\prime}=P_{17 t-9}^{\prime}
$$

Changing t into $8 t-3$ and $17 t-7$, we have

$$
P_{136 t-60}^{\prime}=P_{120 t-53}^{\prime}+P_{64 t-28}^{\prime}=P_{289 t-128}^{\prime}-P_{255 t-113}^{\prime}
$$

Table 2. $P_{a t-d}^{\prime}+P_{b t-e}^{\prime}=P_{c t-f}^{\prime}, P_{x}^{\prime}+P_{y}^{\prime}=P_{z}^{\prime} \quad(z \leqslant 30)$

	p	q	r	s	a	b	c	d	e	f	t	x	y	z
(II)	4	1	8	1	15	8	17	8	4	9	1	7	4	8
22	12	25												
(I)	4	3	0	1	7	24	25	0	1	1	1	7	23	24
(II)	5	2	16	3	21	20	29	16	15	22	1	5	5	7
(I)	8	3	3	29	55	48	73	33	29	44	1	22	19	29

Table 3. Correspondence of the Solutions of $P_{x}+P_{y}=P_{z}$ in [1]
Ex. 1

g	Parity	Case	p	q	r	s	t
$k:$ even		(I)	$\frac{(k-2)^{2}}{2} t+1$	$\frac{(k-2)^{2}}{2} t$	0	$\frac{k-4}{2}$	1
$k:$ odd	$t:$ even	(I)	$\frac{(k-2)^{2}}{2} t+1$	$\frac{(k-2)^{2}}{2} t$	0	$k-4$	1
	$t:$ odd	(II)	$(k-2)^{2} t+1$	1	$\frac{(k-2)^{3} t+(3 k-8)}{2}$	1	1

3. THE EQUATIONS $P_{z}=P_{x}+P_{y}=P_{u}-P_{v}=P_{r} P_{s}$

For $g \neq 4$, if $(g-2) P_{n}-(g-4)=2 P_{m}$, we conjecture that $P_{P_{n}}=P_{n} P_{m}$ can be expressed as the sum and difference of two other g-gonal numbers. But we cannot prove this. However, we have

Theorem 3: There exist an infinite number of hexagonal numbers that can be expressed as the sum-difference-product of two other hexagonal numbers.

Proof: If we assume $H_{n}=H_{3} H_{m}$, then we have $(4 n-1)^{2}-15(4 m-1)^{2}=-14$. By putting $N=4 n-1, M=4 m-1$, we get $N^{2}-15 M^{2}=-14$. Its complete solution is given by the formulas
(i) $N_{i}+\sqrt{15} M_{i}= \pm(1+\sqrt{15})(4+\sqrt{15})^{i}$
and
(ii) $N_{i}+\sqrt{15} M_{i}= \pm(-1+\sqrt{15})(4+\sqrt{15})^{i}$,
where $i=0, \pm 1, \pm 2, \pm 3, \ldots$.
In (i), if $N_{i}+\sqrt{15} M_{i}>0, i>0$, and $i \equiv 2(\bmod 4)$, then $N_{i} \equiv M_{i} \equiv-1(\bmod$ 4). $\quad N_{i}$ satisfies a recurrence relation

$$
N_{i+2}=8 N_{i+1}-N_{i},
$$

which leads to $N_{i+4}=62 N_{i+2}-N_{i}$. Also, by repetition, $N_{i+8}=3842 N_{i+4}-N_{i}$. From $4 n_{i+8}-1=3842\left(4 n_{i+4}-1\right)-\left(4 n_{i}-1\right)$, it follows that $n_{i+8}=3842 n_{i+4}-$ n_{i} - 960. Changing $4 i-2$ into i, it becomes
$n_{i+2}=3842 n_{i+1}-n_{i}-960$,
with initial values $n_{1}=38, n_{2}=145058$. Similarly, we get

$$
m_{i+2}=3842 m_{i+1}-m_{i}-960,
$$

with initial values $m_{1}=10, m_{2}=37454$.
For all i, we have

$$
\begin{aligned}
H_{n_{i}}=H_{3} H_{m_{i}} & =15 m_{i}\left(2 m_{i}-1\right) \\
& =\left(4 m_{i}-1\right)(8 m-3)-\left(m_{i}-1\right)\left(2 m_{i}-3\right) \\
& =H_{4 m_{i}-1}-H_{m_{i}-1} .
\end{aligned}
$$

For $i \equiv 1(\bmod 7)$, we have $n_{i} \equiv-1(\bmod 13)$. On taking $t=\left(n_{i}+1\right) / 13$ in

$$
H_{13 t-1}=H_{5 t}+H_{12 t-1},
$$

we get

$$
H_{n_{i}}=H_{\left(5 n_{i}+5\right) / 13}+H_{\left(12 n_{i}-1\right) / 13} .
$$

Thus, for $i \equiv 1(\bmod 7), H_{n_{i}}$ is expressed as the sum-difference-product of two other hexagonal numbers. If we put $i=1$, then we have

$$
H_{38}=H_{15}+H_{35}=H_{39}-H_{9}=H_{3} H_{10} .
$$

In a similar way, we obtain
Theorem 4: For $g=5$ and 8, there exist an infinite number of g-gonal numbers that can be expressed as the sum-difference-product of two other g-gonal numbers.

Proof: If we put

$$
\left.\begin{array}{l}
n_{1}=4, n_{2}=600912, n_{i+2}=155234 n_{i+1}-n_{i}-25872 \\
m_{1}=1, m_{2}=128115, m_{i+2}=155234 m_{i+1}-m_{i}-25872
\end{array}\right\} i=1,2,3, \ldots,
$$

then, for $i \equiv 9(\bmod 14)$, we have $n_{i} \equiv 7(\bmod 29)$ and $m_{i} \equiv 1(\bmod 2)$, so that

ON SOME POLYGONAL NUMBERS

$$
\begin{aligned}
P_{n_{i}}^{\prime}=P_{\left(21 n_{i}-2\right) / 29}^{\prime}+P_{\left(20 n_{i}+5\right) / 29}^{\prime} & =P_{\left(23 m_{i}-7\right) / 2}^{\prime}-P_{\left(21 m_{i}-7\right) / 2}^{\prime} \\
& =P_{4}^{\prime} P_{m_{i}}^{\prime} .
\end{aligned}
$$

Also, if we put

$$
\left.\begin{array}{l}
n_{1}=304, n_{2}=1345421055984, \\
n_{i+2}=4430499842 n_{i+1}-n_{i}-1476833280 \\
m_{1}=38, m_{2}=166878943590, \\
m_{i+2}=4430499842 m_{i+1}-m_{i}-1476833280
\end{array}\right\} \quad i=1,2,3, \ldots,
$$

then, for $i \equiv 0,1(\bmod 7)$, we have $n \equiv 14(\bmod 29)$, so that

$$
O_{n_{i}}=O_{\left(21 n_{i}-4\right) / 29}+O_{\left(20 n_{i}+10\right) / 29}=O_{9 m_{i}-4}-O_{4 m_{i}-4}=O_{5} O_{m_{i}}
$$

Here, if we put $i=1$, then we have

$$
O_{304}=O_{220}+O_{210}=O_{338}-O_{148}=O_{5} O_{38}
$$

ACKNOWLEDGMENT

I am grateful to Professor Koichi Yamamoto of Tokyo Woman's Christian University for his valuable comments on this manuscript.

REFERENCES

1. S. Ando. "A Note on the Polygonal Numbers." The Fibonacci Quarterly 19 (1981):180-183.
2. J. Arkin. "Certain Arithmetical Properties of $\frac{1}{2} k(a k \pm 1)$." The Fibonacci Quarterly 8 (1970):531-537.
3. L. Bernstein. "Explicit Solutions of Pyramidal Diophantine Equations." Canadian Mathematical Bulletin 15 (1972):177-184.
4. P. Bundschuh. "Zwei Resultate über Trigonalzahlen." Elemente der Mathematik 26 (1971):12-14.
5. L. E. Dickson. History of the Theory of Numbers. II (Chelsea, 1971), 139.
6. L. C. Eggan, P. C. Eggan, \& J. L. Selfridge. "Polygonal Products of Polygonal Numbers and the Pell Equation." The Fibonacci Quarterly 20 (1982): 24-28.
7. E. Fauquembergue et al. "Solution 1155: Triangulaire somme de deux autres triangulaires." L'Intermédiaires des Mathématiciens 5 (1898):69-71.
8. A. S. Fraenkel. "Diophantine Equations Involving Generalized Triangular and Tetrahedral Numbers." Computers in Number Theory. New York: Academic Press, 1971, pp. 99-114.
9. R. T. Hansen. "Arithmetic of Pentagonal Numbers." The Fibonacci quarterly 8 (1970):83-87.
10. H. J. Hindin. "A Theorem Concerning Heptagonal Numbers." The Fibonacci Quarterly 18 (1980):258-259.
11. R. V. Iyer. 'Triangular Numbers and Pythagorean Numbers." Scripta Mathematica 22 (1956):286-288.
12. M. N. Khatri. "Triangular Numbers and Pythagorean Triangles." Scripta Mathematica 21 (1955):94.
13. W. J. O'Donne11. "Two Theorems Concerning Hexagonal Numbers." The Fibonacci Quarterly 17 (1979):77-79.
14. W. J. O'Donnell. "A Theorem Concerning Octagonal Numbers." Journal of Recreational Mathematics (1979-1980):271-272.
15. S. M. Shah. "On Triangular Numbers Which Are Sums of Two Triangular Numbers." Vidya 9 (1966):161-163.
16. W. Sierpiński. "Sur les nombres triangulaires qui sont sommes de deux nombres triangulaires." Elemente der Mathematik 17 (1962):63-65.
17. W. Sierpinski. Elementary Theory of Numbers. Warzawa: Wroclawska Drukarnia Naukowa, 1964, pp. 84-87.
18. W. Sierpiński. "Un théorème sur les nombres triangulaires." Elemente der Mathematik 23 (1968):31-32.
19. A. Wiȩckowski. "O Rozwiązanych Problemach Sierpińskiègo Związanych z Liczbami 'Trójka̧tnymi." Matematyka 32 (1979):288-294.
20. A. Wiȩckowski. "On Some Systems of Diophantine Equations Including the Algebraic Sum of Triangular Numbers." The Fibonacci Quarterly 18 (1980): 165-170.
21. A. Wiȩckowski. "O Związkach Równania $2 t_{x}=t_{y} z$ Innymi Równaniami Diofantycznymi." Matematyka 34 (1981):113-123.

LETTER TO THE EDITOR

$$
19 \text { December } 1985
$$

Dear Editor:

Before the publication of my article, "Generators of Unitary Amicable Numbers," in the May 1985 issue of The Fibonacci Quarterly, Dr. H. J. J. te Riele and I exchanged letters concerning unitary amicable numbers. He pointed out that his report, NW 2/78, published by the Matematisch Centrum in Amsterdam (with which he is affiliated), contains many of the results in my paper, albeit from a slightly different point of view. Both references to these letters and to report NW $2 / 78$ were inadvertently omitted from my article.

The Centrum's address:
Stichting Matematisch Centrum
Kruislaan 4131098 SJ Amsterdam
Postbus 40791009 AB Amsterdam
The Netherlands

> Sincerely yours,
O. William McClung

