ON THE MINIMUM OF A TERNARY CUBIC FORM

WERNER GEORG NOWAK
Institut für Mathematik der Universität für Bodenkultur Gregor Mendel-Strasse 33, A-1180 Vienna, Austria

(Submitted May 1984)

Let

$$
\begin{equation*}
f_{a}=f_{a}(x, y, z)=x^{3}+y^{3}+z^{3}+3 a x y z \tag{1}
\end{equation*}
$$

α an arbitrary real constant, and denote, for a lattice Λ in \mathbb{R}^{3}, by $\mu_{a}(\Lambda)$ the infimum of $\left|f_{a}\right|$ if (x, y, z) runs through all lattice points of Λ except (0,0 , 0). It is the objective of the present paper to estimate, from the above, the supremum M_{a} of $\mu_{a}(\Lambda)$, taken over all lattices Λ with lattice constant 1 . (Since any homogeneous ternary cubic polynomial can be transformed into the shape (1) by a suitable linear transformation, there is no loss of generality in starting from this canonical form.)

Classical work on this topic has been done by Mordell [6] (on the basis of his method of reducing the problem to a two-dimensional one) and by Davenport [1], [2]. Significant progress has been achieved in the special case $a=0$. For arbitrary a however, the results obtained were not very sharp, as was noted by Golser [3], who improved upon Mordell's estimate for the general case, by a refined variant of his method. Later on, in [4], he observed that, for a certain range of the constant a, the bound can be improved further by the simple idea of inscribing a sphere into the star body $\left|f_{a}\right| \leqslant 1$.

The purpose of this short note is to establish a result that improves upon all known estimates for certain intervals of α (at least for $0.9 \leqslant \alpha \leqslant 2.9$ and for $-6 \leqslant a \leqslant-1.2$; see the tables at the end) by the elementary procedure of inscribing an ellipsoid of the shape

$$
\begin{equation*}
E_{t}(r): x^{2}+y^{2}+z^{2}+2 t(x y+x z+y z) \leqslant r^{2} \tag{2}
\end{equation*}
$$

where t is a parameter with $-\frac{1}{2}<t<1$, into the body $K_{a}:\left|f_{a}\right| \leqslant 1$. Our result reads

Theorem: For arbitrary real a and a parameter t with $-\frac{1}{2}<t<1, t \neq 0$, we have

$$
M_{a} \leqslant \sqrt{2}(1-t) \sqrt{1+2 t} m_{a}(t),
$$

where

$$
\begin{aligned}
m_{a}(t) & :=\max \left\{|1+a|(1+2 t)^{-3 / 2} 3^{-1 / 2}, \phi_{1}(t), \phi_{2}(t)\right\}, \\
\phi_{j}(t) & :=\left(2+2 t+4 t c_{j}+c_{j}^{2}\right)^{-3 / 2}\left|2+3 a c_{j}+c_{j}^{3}\right| \quad(j=1,2), \\
c_{j} & :=(2 t)^{-1}\left(b-2 t+(-1)^{j}\left(b^{2}+4 t+4 b t^{2}\right)^{1 / 2}\right), b=a-1
\end{aligned}
$$

Proof: We first briefly recall some well-known facts from the Geometry of Numbers. The critical determinant $\Delta\left(K_{a}\right)$ of our body K_{a} is defined as the infimum of all lattice constants $d(\Lambda)$ of lattices Λ in \mathbb{R}^{3} which have no point in the interior of K_{a} except the origin. For any such lattice Λ, we put

$$
\Lambda_{1}=d(\Lambda)^{-1 / 3} \Lambda \text {, }
$$

[such that $\left.d\left(\Lambda_{1}\right)=1\right]$ and $\Lambda^{\prime}=\Lambda-\{(0,0,0)\}, \Lambda_{1}^{\prime}=\Lambda_{1}-\{(0,0,0)\}$. Since f_{a} is homogeneous of degree 3 , it follows that

$$
\begin{aligned}
\Delta\left(K_{a}\right) & =\inf \left\{d(\Lambda): \inf _{\Lambda^{\prime}}\left|f_{a}\right| \geqslant 1\right\} \\
& =\inf _{d\left(\Lambda_{1}\right)=1} \inf _{\Lambda_{1}^{\prime}}\left\{d \in \mathbb{R}: \inf _{\Lambda_{1}^{\prime}}\left|f_{a}\right| \geqslant 1 / d\right\} \\
& =\left(\sup _{d\left(\Lambda_{1}\right)=1} \inf _{\Lambda_{1}^{\prime}}\left|f_{a}\right|\right)^{-1},
\end{aligned}
$$

hence $M_{a}=\Delta\left(K_{a}\right)^{-1}$. We further note that the ellipsoid $E_{t}(r)$ can be transformed into the unit sphere by the linear transformation

$$
\begin{aligned}
& x^{\prime}=(x+t y+t z) r^{-1}, y^{\prime}=\left(\sqrt{1-t^{2}} y+\sqrt{t-t^{2}} z\right) r^{-1} \\
& z^{\prime}=\frac{\sqrt{(1-t)(1+2 t)}}{r \sqrt{1+t}} z
\end{aligned}
$$

which is of determinant $(1-t) \sqrt{1+2 t} r^{-3}$. Since the critical determinant of the unit sphere equals $1 / \sqrt{2}$ (see 011erenshaw [7] or [5], p. 259), we conclude that

$$
\begin{equation*}
\Delta\left(E_{t}(r)\right)=r^{3}((1-t) \sqrt{1+2 t} \sqrt{2})^{-1} . \tag{3}
\end{equation*}
$$

If we choose r maximal such that $E_{t}(r) \subset K_{a}$, then obviously $\Delta\left(K_{a}\right) \geqslant \Delta\left(E_{t}(r)\right)$, hence

$$
M_{a}=\Delta\left(K_{a}\right)^{-1} \leqslant r^{-3} \sqrt{2}(1-t) \sqrt{1+2 t}
$$

and, by homogeneity,

$$
\max _{E_{t}(r)}\left|f_{a}\right|=1 \Leftrightarrow \max _{E_{t}(1)}\left|f_{a}\right|=r^{-3} .
$$

Therefore, it suffices to establish the following
Lemma: For arbitrary t with $-\frac{1}{2}<t<1, t \neq 0$, the absolute maximum of $\left|f_{a}\right|$ on $E_{t}(1)$ equals $m_{a}(t)$.

Proof: Since the absolute maximum of $\left|f_{a}\right|$ can be found among the relative extrema of f_{a} on the boundary of $E_{t}(1)$, we determine the latter by Lagrange's rule. We obtain

$$
\begin{align*}
& 3 x^{2}+3 a y z+k(2 x+2 t(y+z))=0 \tag{4}\\
& 3 y^{2}+3 a x z+k(2 y+2 t(x+z))=0 \tag{5}\\
& 3 z^{2}+3 a x y+k(2 z+2 t(x+y))=0 \tag{6}\\
& x^{2}+y^{2}+z^{2}+2 t(x y+x z+y z)=1 \tag{7}
\end{align*}
$$

This system does not have any solution with $x \neq y \neq z \neq x$, for otherwise we could infer from (4) and (5) (subtracting and dividing by $x-y$) that

$$
3(x+y)-3 a z+2 k-2 k t=0
$$

and similarly, from (5) and (6), that

$$
3(y+z)-3 a x+2 k-2 k t=0
$$

Again subtracting, we would get the contradiction $x=z$ (at least for $a \neq-1$; the case $a=-1$ then can be settled by an obvious continuity argument).

Furthermore, it is impossible that a solution of our system satisfies $x=$ $y=0$, because this would imply that $k t z=0$ and $z(3+2 k)=0$, hence $z=0$, which contradicts (7). There remain two possibilities (apart from cyclic permutations).

Case 1: $x=y=z \neq 0$. By (7), we have

$$
x=y=z= \pm(1+2 t)^{-1 / 2} 3^{-1 / 2}
$$

and for these values of x, y, and z,

$$
\begin{equation*}
\left|f_{\alpha}\right|=|1+a|(1+2 t)^{-3 / 2} 3^{-1 / 2} \tag{8}
\end{equation*}
$$

Case 2: $0 \neq x=y \neq z$. Eliminating k from (4) and (6), we get

$$
(2 t-a-a t) x^{3}+(1+a t) x^{2} z+(a-1-t) x z^{2}-t z^{3}=0
$$

This can be divided by $x-z$ and yields

$$
t z^{2}+(1+2 t-a) x z+(2 t-a-a t) x^{2}=0
$$

hence $z / x=c_{j}(j=1,2$, as defined in our theorem). From (7) we deduce that

$$
x=y= \pm\left(2+2 t+4 t c_{j}+c_{j}^{2}\right)^{-1 / 2}, \quad z=c_{j} x
$$

and for these values of x, y, and z,

$$
\begin{equation*}
\left|f_{a}\right|=\phi_{j}(t) \quad(j=1,2) . \tag{9}
\end{equation*}
$$

Combining (8) and (9), we complete the proof of the lemma and thereby that of our theorem.

Concluding Remarks: Letting $t \rightarrow 0$ in our result, we just obtain Golser's theorem 1 in [4]. However, this choice of t turns out not to be the optimal one. In principle, one could look for an "advantageous" choice of the parameter t (for a given value of the constant a) by computer calculations, but it can be justified by straightforward monotonicity considerations that it is optimal to choose t such that $\max \left\{\phi_{1}(t), \phi_{2}(t)\right\}$ equals the right-hand side of (8).

We conclude the paper with tables indicating the new upper bounds for M_{a} (for certain values of α) as well as the corresponding "favorable" values of t and the previously-known best results due to Golser [3], [4].

a	0.9	1	2	2.9
t	0.02799	0.040786	0.07973	0.07301
$M_{a} \leqslant$	1.428	1.4483	1.9442	2.5758
Golser: $M_{a} \leqslant$	1.454	1.5018	2.0597	2.5775

ON THE MINIMUM OF A TERNARY CUBIC FORM

a	-6	-5	-4	-3	-2	-1.2
t	-0.064204	-0.07892	-0.101987	-0.14273	-0.23042	-0.41324
$M_{a} \leqslant$	4.9848	4.1843	3.391	2.6116	1.8634	1.33
Golser: $M_{a} \leqslant$	5.03779	4.31314	3.58475	2.85169	2.1106	1.54372

REFERENCES

1. H. Davenport. "On the Minimum of a Ternary Cubic Form." J. London Math. Soc. 19 (1944):13-18.
2. H. Davenport. "On the Minimum of $x^{3}+y^{3}+z^{3}$." J. London Math. Soc. 21 (1946):82-86.
3. G. Golser. "Schranken für Gitterkonstanten einiger Sternkörper." Ph.D. Dissertation, University of Vienna, 1973.
4. G. Golser. "Über Gitterkonstanten spezieller Sternkörper." Sitz.-Ber. Osterr. Akad. Wiss., Abt. II, math.-naturwiss. Kl. 184 (1975):227-238.
5. C. G. Lekkerkerker. Geometry of Numbers. Amsterdam-London: North Holland Publishing Co., 1969.
6. L. J. Mordell. "On the Minimum of a Ternary Cubic Form." J. London Math. Soc. 19 (1944):6-12.
7. K. Ollerenshaw. "The Critical Lattices of a Sphere." J. London Math. Soc. 23 (1948): 297-299.
